214
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Predicting compressive strength of cement-stabilized earth blocks using machine learning models incorporating cement content, ultrasonic pulse velocity, and electrical resistivity

& ORCID Icon
Pages 1045-1069 | Received 05 Jun 2023, Accepted 21 Jul 2023, Published online: 24 Jul 2023

References

  • Sundaralingam K, Peiris A, Anburuvel A, et al. Quarry dust as river sand replacement in cement masonry blocks: Effect on mechanical and durability characteristics. Mater. 2022;21:101324. doi: 10.1016/j.mtla.2022.101324
  • Sathiparan N, Subramaniam DN, Malsara KGN, et al. Thermal comfort analysis of fired-clay brick, cement-sand block and cement stabilized earth block masonry house models. Innov Infrastruct Solut. 2022;7(2):147. doi: 10.1007/s41062-022-00744-9
  • Yogananth Y, Thanushan K, Sangeeth P, et al. Comparison of strength and durability properties between earth-cement blocks and cement–sand blocks. Innov Infrastruct Solut. 2019;4(1):50. doi: 10.1007/s41062-019-0238-8
  • Sathiparan N. Mesh type seismic retrofitting for masonry structures: critical issues and possible strategies. Eur J Environ Civ Eng. 2015;19(9):1136–1154. doi: 10.1080/19648189.2015.1005160
  • Sathiparan N, Jayasundara WGBS, Samarakoon KSD, et al. Prediction of characteristics of cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and electrical resistivity. Mater. 2023;29:101794. doi: 10.1016/j.mtla.2023.101794
  • Lombillo I, Villegas L, Fodde E, et al. In situ mechanical investigation of rammed earth: Calibration of minor destructive testing. Constr Build Mater. 2014;51:451–460. doi:10.1016/j.conbuildmat.2013.10.090
  • Sathiparan N, Anjalee WAV, Kandage KKS. The scale effect on small-scale modelling of cement block masonry. Mater Struct. 2016;49(7):2935–2946. doi: 10.1617/s11527-015-0696-1
  • Gholizadeh S. A review of non-destructive testing methods of composite materials. Procedia Struct Integr. 2016;1:50–57. doi: 10.1016/j.prostr.2016.02.008
  • Gaydecki P, Fernandes B, Quek S, et al. Inductive and magnetic field inspection systems for rebar visualization and corrosion estimation in reinforced and pre-stressed concrete. Case Stud NondestrTest Eval. 2007;22(4):255–298. doi: 10.1080/10589750701362616
  • Fang Z, Qajar J, Safari K, et al. Application of Non-Destructive Test Results to Estimate Rock Mechanical Characteristics— a Case Study. Miner. 2023;13(4):472. doi: 10.3390/min13040472
  • Liu L, Miramini S, Hajimohammadi A. Characterising fundamental properties of foam concrete with a non-destructive technique. Case Stud NondestrTest Eval. 2019;34(1):54–69. doi: 10.1080/10589759.2018.1525378
  • Rashid K, Waqas R. Compressive strength evaluation by non-destructive techniques: An automated approach in construction industry. J Buil Eng. 2017;12:147–154. doi: 10.1016/j.jobe.2017.05.010
  • Ivanchev I. Investigation with non-destructive and destructive methods for assessment of concrete compressive strength. Appl Sci. 2022;12(23):12172. doi: 10.3390/app122312172
  • Saleh E, Tarawneh A, Dwairi H, et al. Guide to non-destructive concrete strength assessment: Homogeneity tests and sampling plans. J Buil Eng. 2022;49:104047. doi: 10.1016/j.jobe.2022.104047
  • Singh N, Singh SP. Evaluating the performance of self compacting concretes made with recycled coarse and fine aggregates using non destructive testing techniques. Constr Build Mater. 2018;181:73–84. doi: 10.1016/j.conbuildmat.2018.06.039
  • Shakr Piro N, Mohammed A, Hamad SM, et al. Electrical resistivity-Compressive strength predictions for normal strength concrete with waste steel slag as a coarse aggregate replacement using various analytical models. Constr Build Mater. 2022;327:127008. doi:10.1016/j.conbuildmat.2022.127008
  • Yılmaz T, Ercikdi B. Predicting the uniaxial compressive strength of cemented paste backfill from ultrasonic pulse velocity test. Case Stud NondestrTest Eval. 2016;31(3):247–266. doi: 10.1080/10589759.2015.1111891
  • Jiang H, Han J, Li Y, et al. Relationship between ultrasonic pulse velocity and uniaxial compressive strength for cemented paste backfill with alkali-activated slag. Case Stud Nondestr Test Eval. 2020;35(4):359–377. doi: 10.1080/10589759.2019.1679140
  • Kasinikota P, Tripura DD. Prediction of physical-mechanical properties of hollow interlocking compressed unstabilized and stabilized earth blocks at different moisture conditions using ultrasonic pulse velocity. J Buil Eng. 2022;48:103961. doi: 10.1016/j.jobe.2021.103961
  • Ahmad A, Ahmad W, Aslam F, et al. Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Studies Construction Mater. 2022;16:e00840. doi: 10.1016/j.cscm.2021.e00840
  • Zhang LV, Marani A, Nehdi ML. Chemistry-informed machine learning prediction of compressive strength for alkali-activated materials. Constr Build Mater. 2022;316:126103. doi: 10.1016/j.conbuildmat.2021.126103
  • Wu J, Jing H, Yin Q, et al. Strength prediction model considering material, ultrasonic and stress of cemented waste rock backfill for recycling gangue. J Clean Prod. 2020;276:123189. doi:10.1016/j.jclepro.2020.123189
  • Bilgehan M. A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches. Case Stud NondestrTest Eval. 2011;26(1):35–55. doi: 10.1080/10589751003770100
  • Vidya Sagar R, Dutta M. Combined usage of acoustic emission technique and ultrasonic pulse velocity test to study crack classification in reinforced concrete structures. Case Stud NondestrTest Eval. 2021;36(1):62–96. doi: 10.1080/10589759.2019.1692013
  • Asteris PG, Lourenço PB, Hajihassani M, et al. Soft computing-based models for the prediction of masonry compressive strength. Eng Struct. 2021;248:113276. doi: 10.1016/j.engstruct.2021.113276
  • Sharafati A, Haji Seyed Asadollah SB, Al-Ansari N. Application of bagging ensemble model for predicting compressive strength of hollow concrete masonry prism. Ain Shams Eng J. 2021;12(4):3521–3530. doi: 10.1016/j.asej.2021.03.028
  • Lan G, Wang Y, Zeng G, et al. Compressive strength of earth block masonry: Estimation based on neural networks and adaptive network-based fuzzy inference system. Compos Struct. 2020;235:111731. doi:10.1016/j.compstruct.2019.111731
  • Ren Q, Wang G, Li M, et al. Prediction of rock compressive strength using machine learning algorithms based on spectrum analysis of geological hammer. Geotech Geol Eng. 2019;37(1):475–489. doi: 10.1007/s10706-018-0624-6
  • Aboutaleb S, Behnia M, Bagherpour R, et al. Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull Eng Geol Environ. 2018;77(4):1717–1728. doi: 10.1007/s10064-017-1043-2
  • Asteris PG, Skentou AD, Bardhan A, et al. Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests. Constr Build Mater. 2021;303:124450. doi: 10.1016/j.conbuildmat.2021.124450
  • Khashman A, Akpinar P. Non-destructive prediction of concrete compressive strength using neural networks. Procedia Comput Sci. 2017;108:2358–2362. doi: 10.1016/j.procs.2017.05.039
  • El-Mir A, El-Zahab S, Sbartaï ZM, et al. Machine learning prediction of concrete compressive strength using rebound hammer test. J Buil Eng. 2023;64:105538. doi: 10.1016/j.jobe.2022.105538
  • Li D, Tang Z, Kang Q, et al. Machine learning-based method for predicting compressive strength of concrete. Processes. 2023;11(2):390. doi: 10.3390/pr11020390
  • Xin Z, Ke D, Zhang H, et al. Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach. Constr Build Mater. 2022;341:127855. doi:10.1016/j.conbuildmat.2022.127855
  • Sathiparan N, Jaasim JHM, Banujan B. Sustainable production of cement masonry blocks with the combined use of fly ash and quarry waste. Mater. 2022;26:101621. doi: 10.1016/j.mtla.2022.101621
  • Poorveekan K, Ath KMS, Anburuvel A, et al. Investigation of the engineering properties of cementless stabilized earth blocks with alkali-activated eggshell and rice husk ash as a binder. Constr Build Mater. 2021;277:122371. doi: 10.1016/j.conbuildmat.2021.122371
  • ASTM-C597. Standard test method for pulse velocity through concrete. West Conshohocken, PA: ASTM International; 2010.
  • Carrasco EVM, Silva SR, Mantilla JNR. Assessment of mechanical properties and the influence of the addition of sawdust in soil–cement bricks using the technique of ultrasonic anisotropic inspection. J Mater Civ Eng. 2014;26(2):219–225. doi: 10.1061/(ASCE)MT.1943-5533.0000723
  • ASTM-C1876. Standard test method for bulk electrical resistivity or bulk conductivity of concrete. West Conshohocken, PA: ASTM International; 2012.
  • Subramaniam DN, Jeyananthan P, Sathiparan N. Soft computing techniques to predict the electrical resistivity of pervious concrete. Asian J Civ Eng. 2023; doi: 10.1007/s42107-023-00806-y
  • ASTM-C109. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). West Conshohocken, PA: ASTM International; 2020.
  • Ahmed HU, Mohammed AA, Mohammed A, et al. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete. Plos One. 2022;17(5):e0265846. doi: 10.1371/journal.pone.0265846
  • Jeyananthan P. Role of different types of RNA molecules in the severity prediction of SARS-CoV-2 patients. Pathol Res Pract. 2023;242:154311. doi: 10.1016/j.prp.2023.154311
  • Jeyananthan P. SARS-CoV-2 diagnosis using transcriptome data: A machine learning approach. SN Comput Sci. 2023;4(3):218. doi: 10.1007/s42979-023-01703-6
  • Lek S, Park YS. Artificial neural networks. In: Jørgensen SE Fath BD, editors. Encyclopedia of Ecology. Oxford: Elsevier; 2008. pp. 237–245. doi: 10.1016/B978-008045405-4.00173-7.
  • Jeyananthan P. Prolonged viral shedding prediction on non-hospitalized, uncomplicated SARS-CoV-2 patients using their transcriptome data, computer methods and programs in biomedicine update. Comput Methods Programs Biomed. 2022;2:100070. doi: 10.1016/j.cmpbup.2022.100070
  • Sathiparan N, Jeyananthan P, Subramaniam DN. Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine learning techniques. Asian J Civ Eng. 2023; doi: 10.1007/s42107-023-00790-3
  • Lin P, Ding F, Hu G, et al. Machine learning-enabled estimation of crosswind load effect on tall buildings. J Wind Eng Ind Aerodyn. 2022;220:104860. doi:10.1016/j.jweia.2021.104860
  • Sathiparan N, Jeyananthan P. Prediction of masonry prism strength using machine learning technique: Effect of dimension and strength parameters. Mater Today Commun. 2023;35:106282. doi: 10.1016/j.mtcomm.2023.106282
  • Guillen MD, Aparicio J, Esteve M. Gradient tree boosting and the estimation of production frontiers. Expert Syst Appl. 2023;214:119134. doi: 10.1016/j.eswa.2022.119134
  • Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77(4):802–813. doi: 10.1111/j.1365-2656.2008.01390.x
  • Hu L, Wang H, Qian H, et al. Centrifuge-less dispersive liquid-liquid microextraction base on the solidification of switchable solvent for rapid on-site extraction of four pyrethroid insecticides in water samples. J Chromatogr A. 2016;1472:1–9. doi: 10.1016/j.chroma.2016.10.013
  • Chanal D, Yousfi Steiner N, Petrone R, et al. Online diagnosis of PEM fuel cell by fuzzy C-means clustering. In: Cabeza LF, editor Encyclopedia of Energy Storage. Oxford: Elsevier; 2022. pp. 359–393.
  • Song Y, Kong X, Zhang C. A large-scale-nearest neighbor classification algorithm based on neighbor relationship preservation. Wireless Commun Mobile Comput. 2022;2022:7409171. doi: 10.1155/2022/7409171
  • Saini I, Singh D, Khosla A. QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res. 2013;4(4):331–344. doi: 10.1016/j.jare.2012.05.007
  • Xia Y. Chapter eleven - correlation and association analyses in microbiome study integrating multiomics in health and disease. In: Sun J, editor. Progress in Molecular Biology and Translational Science, Academic Press. 2020. pp. 309–491. 10.1016/bs.pmbts.2020.04.003
  • Chen Y-P-P, Ivanova EP, Wang F, et al. 9.15 - Bioinformatics. In: Liu H-W Mander L, editors. Comprehensive Natural Products II. Oxford: Elsevier; 2010. pp. 569–593. doi: 10.1016/B978-008045382-8.00729-2.
  • Sun W, Chang C, Long Q, Bayesian non-linear support vector machine for high-dimensional data with incorporation of graph information on features, Proc IEEE Int Conf Big Data 2019; Los Angeles, CA; 2019. p. 4874–4882.
  • An W, Liang M. Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises. Neuro comput. 2013;110:101–110. doi: 10.1016/j.neucom.2012.11.023
  • Ndagi A, Umar AA, Hejazi F, et al. Non-destructive assessment of concrete deterioration by ultrasonic pulse velocity: A review. IOP Conference Series: Earth And Environ Sci. 2019;357(1):012015. doi: 10.1088/1755-1315/357/1/012015
  • Sathiparan N, Anburuvel A, Maduwanthi KAPN, et al. Effect of moisture condition on cement masonry blocks with different fine aggregates: river sand, lateritic soil and manufactured sand. Sādhanā. 2022;47(4):270. doi: 10.1007/s12046-022-02054-3
  • Zhou M, Wang J, Cai L, et al. Laboratory investigations on factors affecting soil electrical resistivity and the measurement. IEEE Trans Sustain Energy. 2015;51(6):5358–5365. doi: 10.1109/TIA.2015.2465931
  • Cao Z, Xiang L, Peng E, et al. Experimental Study on Electrical Resistivity of Cement-Stabilized Lead-Contaminated Soils. Adv Civ Eng 2018. 2018;2018:1–11. doi: 10.1155/2018/4628784
  • Kibria G, Hossain MS. Investigation of geotechnical parameters affecting electrical resistivity of compacted clays. J Geotech Geoenviron Eng. 2012;138(12):1520–1529. doi: 10.1061/(ASCE)GT.1943-5606.0000722
  • Shah SFA, Chen B, Zahid M, et al. Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning. Constr Build Mater. 2022;360:129534. doi: 10.1016/j.conbuildmat.2022.129534
  • Zhang J, Niu W, Yang Y, et al. Machine learning prediction models for compressive strength of calcined sludge-cement composites. Constr Build Mater. 2022;346:128442. doi:10.1016/j.conbuildmat.2022.128442
  • Quan Tran V, Quoc Dang V, Si Ho L. Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach. Constr Build Mater. 2022;323:126578. doi: 10.1016/j.conbuildmat.2022.126578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.