187
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Performance evaluation of granite rock based on the quantitative piezoceramic sensing technique

, , , &
Pages 1107-1128 | Received 05 Jun 2023, Accepted 27 Jul 2023, Published online: 22 Aug 2023

References

  • Taoying L, Mengyuan C, Qing L, et al. Fracture and damage evolution of multiple-fractured rock-like material subjected to compression. Materials. 2022;15(12):4326. doi: 10.3390/ma15124326
  • Xu S, Wang S, Zhang P, et al. Study on strain characterization and failure location of rock fracture process using distributed optical fiber under uniaxial compression. Sens (Basel). 2020;20(14):3853. doi: 10.3390/s20143853
  • Cong M, Chuanjie Z, Jingxuan Z, et al. Dynamic response and failure characteristics of combined rocks under confining pressure. Sci Rep. 2022;12(1):12187. doi: 10.1038/s41598-022-16299-9
  • Yifan C, Hang L, Shijie X, et al. Fracture closure empirical model and theoretical damage model of rock under compression. Materials. 2023;16(2):589. doi: 10.3390/ma16020589
  • Yunhao W, Xuesheng L, Yunliang T, et al. Mechanical properties and failure mechanism of anchored bedding rock material under impact loading. Materials. 2022;15(19):6560. doi: 10.3390/ma15196560
  • Zhao Y, Li Q, Zhang K, et al. Effect of fissure angle on energy evolution and failure characteristics of fractured rock under uniaxial cyclic loading. Sci Rep. 2023;13(1):2678. doi: 10.1038/s41598-022-26091-4
  • Yanjun Y, Jianhua H, Guanping W, et al. Numerical simulation of micro crack evolution and failure modes of limestone under uniaxial multi-level cyclic loading. Sci Rep. 2023;13(1):4117. doi: 10.1038/s41598-023-31360-x
  • Xu K, Deng Q, Cai L, et al. Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers. Sensors. 2018;18(5):1377. 10.3390/s18051377
  • Guo X-Y, Wang Y-L, Huang P-Y, et al. Fatigue life prediction of reinforced concrete beams strengthened with CFRP: Study based on an accumulative damage model. Polymers. 2019;11(1):130. doi: 10.3390/polym11010130
  • Anthony L, E KJ, N SL, et al. Damage amplification during repetitive seismic waves in mechanically loaded rocks. Sci Rep. 2023;13(1):1271. doi: 10.1038/s41598-022-26721-x
  • Yaozhong C, Bo W, Guowang M, et al. Research on blasting cumulative dynamic damage of surrounding rock in step construction tunnel. Sci Rep. 2023;13(1):1974. doi: 10.1038/s41598-023-28900-w
  • Alves C, Figueiredo C, Maurício A, et al. Susceptibility of limestone petrographic features to salt weathering: A scanning electron microscopy study. Microscopy And Microanalysis. 2013;19(5):1231–1240. 10.1017/S1431927613001591
  • Wang Y, Feng WK, Wang HJ, et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning. Cold Reg Sci Technol. 2020;177(prepublish):103115. doi: 10.1016/j.coldregions.2020.103115
  • Jiaqi W, Lei T, Shenghang Z, et al. Qualitative and quantitative investigations on the failure effect of critical fissures in rock specimens under plane strain compression. Materials. 2023;16(2):611. doi: 10.3390/ma16020611
  • Youliang C, Qijian C, Yungui P, et al. A chemical damage creep model of rock considering the influence of triaxial stress. Materials. 2022;15(21):7590. doi: 10.3390/ma15217590
  • Aryan P, Sampath S, Sohn H. An overview of non-destructive testing methods for integrated circuit packaging inspection. Sensors. 2018;18(7):1981. doi: 10.3390/s18071981
  • Si JF, Xiong W, Zhong DW, et al. Piezoelectric-based damage-depth monitoring method for underwater energy-relief blasting technique. J Civil Struct Health Monit. 2021;11(2):251–264. doi: 10.1007/s13349-020-00451-y
  • Dubuc B, Ebrahimkhanlou A, Salamone S. Corrosion monitoring of prestressed concrete structures by using topological analysis of acoustic emission data. Smart Mater Struct. 2019;28(5):055001. doi: 10.1088/1361-665X/ab0e96
  • Zhang S, Cao J, Liu Y, et al. Statistical characterization of damage of different surface p-wave velocity sets under dynamic load and study on overall radon detection consistency. Lithosphere. 2021;2021(Special 4): doi: 10.2113/2021/2015665
  • Ho D-D, Kim J-T, Stubbs N, et al. Prestress-force estimation in PSC girder using modal parameters and system identification. Adv Struct Eng. 2012;15(6):997–1012. doi: 10.1260/1369-4332.15.6.997
  • Kim J-T, Park J-H, Lee B-J. Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Eng Struct. 2006;29(7):1354–1365. doi: 10.1016/j.engstruct.2006.07.024
  • Wu C, Gong F, Luo Y. A new quantitative method to identify the crack damage stress of rock using AE detection parameters. Bull Eng Geol Environ. 2020;80(1):519–531. doi: 10.1007/s10064-020-01932-6
  • Liu Q, Liu Q, Pan Y, et al. Experimental study on rock indentation using infrared thermography and acoustic emission techniques. J Geophys Eng. 2018;15(5):1864–1877. doi: 10.1088/1742-2140/aac096
  • Bayon G, Kahle A, Hennion B, et al. Application of dynamic neutron imaging in the earth sciences to determine viscosities and densities of silicate melts. Case Stud NondestrTest Eval. 2001;16(2–6):287–296. doi: 10.1080/10589750108953084
  • Na S, Lee HK. A technique for improving the damage detection ability of the electro-mechanical impedance method on concrete structures. Smart Mater Struct. 2012;21(8):085024. doi: 10.1088/0964-1726/21/8/085024
  • YW Y, YY L, CK S. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: I. Experiment. Smart Mater Struct. 2008;17(3):035008. doi: 10.1088/0964-1726/17/3/035008
  • YW Y, YY L, CK S. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: II. Numerical verification. Smart Mater Struct. 2008;17(3):035009. doi: 10.1088/0964-1726/17/3/035009
  • Yan S, Dai Y, Zhao P, et al. Interfacial damage identification of steel and concrete composite beams based on piezoceramic wave method. J Appl Biomater Funct Mater. 2018;16(1_suppl):70–80. doi: 10.1177/2280800017753051
  • Rybyanets AN, Rybyanets AA. Ceramic piezocomposites: modeling, technology, and characterization. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(9):1757–1773. doi: 10.1109/TUFFC.2011.2013
  • Zhang J, Li Y, Du G, et al. Damage detection of L-Shaped Concrete Filled Steel Tube (L-CFST) columns under cyclic loading using embedded piezoceramic transducers. Sens (Basel). 2018;18(7):2171. doi: 10.3390/s18072171
  • QuangQuang P, NgocLoi D, JeongTae K. Smart PZT-Embedded sensors for impedance monitoring in prestressed concrete anchorage. Sensors. 2021;21(23):7918. doi: 10.3390/s21237918
  • Kocherla A, Subramaniam KVL. Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression. Measurement. 2020;163(prepublish):108018. doi: 10.1016/j.measurement.2020.108018
  • Demi A, Chengxing L, Hongping Z. Embedded piezoelectric transducers based early-age hydration monitoring of cement concrete added with accelerator/retarder admixtures. J Intell Mater Syst Struct. 2021;32(8):847–866. doi: 10.1177/1045389X20969916
  • Huynh T-C, Nguyen T-D, Ho D-D, et al. Sensor fault diagnosis for impedance monitoring using a piezoelectric-based smart interface technique. Sensors. 2020;20(2):510. 10.3390/s20020510
  • Campeiro LM, Silveira RZD, Baptista FG. Impedance-based damage detection under noise and vibration effects. Struct Health Monit. 2018;17(3):654–667. doi: 10.1177/1475921717715240
  • Liu Y, Ye Y, Wang Q, et al. Experimental research on shear failure monitoring of composite rocks using piezoelectric active sensing approach. Sensors. 2020;20(5):1376. doi: 10.3390/s20051376
  • Negi P, Chakraborty T, Bhalla S. Viability of electro-mechanical impedance technique for monitoring damage in rocks under cyclic loading. Acta Geotech. 2022;17(2):483–495. doi: 10.1007/s11440-021-01181-1
  • Si J, Zhong D, Xiong W. Piezoceramic-based damage monitoring of concrete structure for underwater blasting. Sens (Basel). 2020;20(6):1672. doi: 10.3390/s20061672
  • Zheng Y, Liu K, Wu Z, et al. Lamb waves and electro-mechanical impedance based damage detection using a mobile PZT transducer set. Ultrasonics. 2019;92:13–20. doi: 10.1016/j.ultras.2018.06.008
  • Changhang X, Jing X, Wuyang Z, et al. Experimental investigation on the detection of multiple surface cracks using vibrothermography with a low-power piezoceramic actuator. Sensors. 2017;17(12):2705. doi: 10.3390/s17122705
  • Luo M, Li W, Hei C, et al. Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method. Sens (Basel). 2016;16(12):2083. doi: 10.3390/s16122083
  • Guofeng D, Zhao L, Gangbing S. A PVDF-Based sensor for internal stress monitoring of a Concrete-Filled Steel Tubular (CFST) column subject to impact loads. Sensors. 2018;18(6):1682. doi: 10.3390/s18061682
  • Sun H, Wang YS, Qing XL, et al. High strain survivability of piezoceramics by optimal bonding adhesive design. Sensors. 2018;18(8):2554. doi: 10.3390/s18082554

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.