Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 34, 2016 - Issue 4
7,452
Views
523
CrossRef citations to date
0
Altmetric
Original Articles

Azo dyes and human health: A review

References

  • IUPAC. Compendium of Chemical Terminology, 2nd ed. 1997. Online corrected version (2009) “azo compounds”; 1997.
  • Mock GH, Freeman H. Dye application, manufacture of dye intermediates and dyes. In Kent and Riegel's, Handbook of Industrial Chemistry and Biotechnology, 11th ed.; Springer; 2007;449–590.
  • Meyer U. Biodegradation of systemic organic colorants. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds. FEMS Symp. Vol.12. Lesinger T, Cook AM, Hutter RM, Nuesch J, Eds. New York: Academic Press;1981:371.
  • Anon. Ecological and toxicological association of dyes and pigments manufacturers, textile chemists and colorist. German Ban of Use of Certain Azo Compounds in Some Consumer Goods. ETAD InformationNotice; 1996;28(6):11–13.
  • Puvaneswari N, Muthukrishnan J, Gunasekkaren P. Toxicity assessment and microbial degradation of azo dyes. Indian J Exper Biol. 2006;44: 618–626.
  • Mossvi S, Kher X, Madamar D. Isolation, characterization and decoloration of textile dyes by a mixed bacterial consortium. Dyes and Pigm. 2007;7(3):723–729.
  • Hildenbrand SF, Schmahl FW, Wodarz R, Kimmel R, Dartsch PC. Azo dyes and carcinogenic aromatic amines in cell cultures Int Arch Occup Enviro Health. 1999;72(3):M052–M056.
  • Correia VM, Stephenson TS, Judd SJ. Characterization of textile wastewaters—a review. Environ Technol. 1994;15:917–929.
  • Domagk G. Ein Beitrag zur Chemotherapie der bakteriellen infektionen. Dtsch med Wochenschr. 1935;61:250–253.
  • Tréfouël JT, Nitti F, Bovet D. Activité du p-aminophénylsulfamide surl'infection streptococcique expérimentar de la souris et du lapin. C R Soc Biol. 1935;120:23.
  • Hörlein H. Deutsches Reich Patentschrift Nr; May 18, Springer; 1909;226239.
  • Turk JL. Leonard Colebrook: The chemotherapy and control of streptococcal infections. J Royal Soc Med. 1994;87(12):727–728.
  • Ellis H. Leonard Colebrook and the treatment of puerperal sepsis. Brit J. Hosp Medici 2005;72(2):109.
  • Miller JA, Miller EC. The carcinogenicity of certain derivatives of p-dimethylaminoazobenzene. J Exp Med. 1948;87(2):139–156.
  • Chung KT, Fulk GE, Andrews AW. The mutagenicity of Methyl Orange and metabolites produced by intestinal anaerobes. Mutat Res. 1978;58:375–379.
  • Chung KT, Fulk GE, Andrews AW. Mutagenicity testing of some commonly used dyes. Appl Environ Microbiol. 1981;42:641–648.
  • Miller JA, Miller EC, Finger GC. Further studies on carcinogenicity of dyes related to 4-aminoazobenzene: the requirements for an unsubstituted 2-position. Cancer Res. 1957;17:387–398.
  • Chung KT. The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat Res. 1983;114:269–281.
  • Chung KT, Cerniglia CE. Mutagenicity of azo dyes: structure-activity relationships. Mutat Res. 1992;277:201–220.
  • Chung KT, Stevenson SE, Jr., Cerniglia CE. The reduction of azo dyes by intestinal microflora. Crit Rev Microbiol. 1992;18:175–190.
  • Chung KT, Stevens SE, Jr. Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem. 1993;12:2121–2132.
  • Platzek T, Lang G, Grohmann G, Gi U-S, Baltes W. Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum Exper Toxicol. 1999;19(8):552–559.
  • Stingley RL, Zou W, Heinze TM, Chen H, Cerniglia CE. Metabolism of azo dyes by human skin microbiota. J Med Microbiol. 2010;59:108–114.
  • Feng J, Cerniglia CE, Chen H. Toxicological significance of azo dye metabolism by human intestinal microflora. Front in Biosc Elite. 2012;4:568–586.
  • Morokutti A, Lyskowski A, Sollner S, Pointner E, Fitzpatrick TB, Kratky C, Gruber K, Macheroux P. Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase. Biochem. 2005;44:13724–13733.
  • Ito K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo KY, Kitade Y, Tanokura M. Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms. J Biol Chem. 2006;28:20567–20576.
  • Liu ZJ, Chen H, Shaw N, Hopper SL, Chen L, Chen S, Cerniglia CE, Wang BC. Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys. 2007;463:68–77.
  • Chen H, Xu H, Kweon OS, Chen S, Cerniglia CE..Functional role of tryptophan of Enterococcus faecalis azoreductase (AzoA) as resolved by structural and mutational analysis. Microbiol. 2008;154:2659–2667.
  • Wang CJ, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I. Molecular cloning, characterization and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol. 2007;373:1213–1228.
  • Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H. Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem. 2004;279:34890–34897.
  • Martins MAM, Cardoso MH, Queiroz MJ, Ramalho MT, Campus AMO. Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere. 1999;38:2456–2460.
  • Douch PGC. Azo and nitro-reductase of the cestode Moniezia expansa. Localization of the enzyme activities and optimum assay conditions. Xenobi. 1975;5:773–780.
  • Douch PGC, Blair SSB. The metabolism of foreign compounds in the cestode, Moniezia expensa, and the nematode Ascaris lumbricoides var suum. Xenobi. 1975;5:279–292.
  • Weber EJ. Iron-mediated reductive transformation-investigation of reaction mechanism. Environ Sci Technol. 1996;29:1163–1170.
  • Keck EK, Klein Kudlich M, Stolz A, Knackmuss HJ, Mattes R. Reduction of azo dyes by redox mediators originating in the naphthalene sulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol. 1997;63(9):3684–3690.
  • Nam S, Renganatham V. Non-enzymatic reduction azo-dyes by NADH. Chemospher. 2000;40:351–357.
  • Hong Y-G, Gu JD. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Appl Microbiol Biotechnol. 2010;88:837–843.
  • Aaron JJ, Oturan MA. New photochemical and electrochemical methods for degradation of pesticides in aqueous media: environmental application. Tr J Chem. 2001;25:509–520.
  • Guivarch E, Trevin S, Lahitte C, Oturan MA. Degradation of azo dyes in water by electro- Fenton process. Environ Chem Lett. 2003;1:38–44.
  • Tantak NP. Chaudhari S. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment. J Hazard Materials B. 2006;136:698–705.
  • Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catlysis B: Environmental. 2004;49:1–14.
  • Delclos KB, Tarpley WG, Miller EC, Miller JA. 4-aminoazobenzene and N, N-dimethyl- 4-aminoazobenzene as equipotent hepatic carcinogens in male C57BL/6 X C3H/He F1 mice and characterization of N-(Deoxyguanosin-8-yl)-4-aminoazobenzene as the major persistent hepatic DNA-bound dye in these mice. Cancer Res. 1984;44:2540–2550.
  • IARC. Some aziridines, N-, S- & O-mustards and selenium. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man. 1975;9:1–268.
  • Nelson AA, Woodard G. Tumors of the urinary bladder, gall bladder, and liver in dogs fed o-aminoazotoluene or p-dimethylaminoazobenzene. J Natl Canc Inst. 1953;13:1497–1509.
  • Levine WG. Metabolism of azo dyes: implication for detoxification and activation. Drug Metab Rev. 1991;23(3/4):253–309.
  • Opie EL. The Pathogenesis of tumors of the liver produced by Butter Yellow. The J Exper Med. 1944;80(3):231–246.
  • Stiborová M, Martínek V, Rýdlová H, Hodek P, Frei E. Sudan I is a potential carcinogen for human: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002;62(20):5678–5684.
  • Refat NA, Ibrahim ZS, Moustafa GG, Sakamoto KQ, Ishizuka M, Fujita S. The induction of cytochrome P450 1A1 by Sudan dyes. J Biochem Mol Toxicol. 2008;22(2):77
  • Han D, Yu M, Knopp D, Nissner R, Wu M, Deng A. Development of highly sensitive and specific-enzyme-linked immunosorbent assay for detection of Sudan I and food samples. Agri Food Chem. 2007;53:6424–6430.
  • He I, Su Y, Fang B, Shen X, Zeng Z, Liu Y. Determination of Sudan dyes residues in eggs by liquid chromatography and gas chromatography-mass spectrometry. Anal Chim Acta. 2007;594:139–146.
  • Calbiani F, Carer M, Elviri L, Mangia A, Zagnoni I. 2004. Accurate mass measurements for the confirmation of Sudan azo-dyes in hot chili products by capillary liquid chromatography-electrospray tandem quadrupole orthogonal-acceleration time of flight mass spectrometry. J Chromatogr A. 2004;1058-127-135.
  • Safety Review of the Use of Certain Azo-Dyes in Cosmetic Products adopted by the SCCNFP SCCNFP/0495/01, final Opinion of the Scientific Committee on Cosmetic. Products an non-Food Products Intended for Consumer Concerning (SCCNFP) during the 19th plenary meeting of February 27, 2002, Brussels.
  • Delclos KB, Miller EC, Miller JA, Liem A. Sulfuric acid esters as major ultimate electrophilic and hepatocarcinogenic metabolites of 4-aminoazobenzene and its N-methtyl derivatives in infant male C57BL/66J x C3H/HeJF1 (B6C3F1) mice. Carcinogenesis. 1986;7(2):277–287.
  • Ashby J, Lefevre PA, Callander RD. The possible role of azoreduction in the bacterial mutagenicity of 4-dimethylaminoazobenzene (DAB) and two of its analogue (6BT and 5I). Mutat Res. 1983;116:271–279.
  • International Agency for Research on Cancer. IARC Monograph on the evaluation of carcinogenic risk of chemicals to man, some aromatic azo compounds. WHO monogr. Ser. 1974;8:199–206.
  • Nestmann ER, Kowbel DJ, Wheat JA. Mutagenicity of in Salmonella of used by defense personnel for detection of liquid chemical warfare agent. Carcinogenesis. 1981;2:879–883.
  • Brown MA, De Vito SC. Predicting azo dye toxicity. Crit Rev Environ Sci Technol. 1993;23(3):249–324.
  • Chung K-T. Carcinogenicity, allergenicity, and lupus-inducibility of arylamines. Front BioSci Elite. 2016;2:29–39.
  • Chung K-T. Occurrence, uses, and carcinogenicity of arylamines. Front in Biosci Elite. 2015;7:367–393.
  • IARC. IARC Monographs on the Evaluation of carcinogenic Risks to Humans. Some aromatic amines, organic dyes, and related exposures. 2010;99:1–692.
  • Chung K-T, Chen S-C, Claxton LD. Review of Salmonella typhimurium mutagenicity of benzidine, benzidine analogues, and benzidine based dyes. Mutat Res. 2006;12: 58–76.
  • NTP. Toxicology and carcinogenesis studies of 3, 3′-dimethylbenzidine dihydrochloride (Cas No. 612-82-) in 344/N rats drinking water studies. Technical Report Series. No 390, Research Triangle Park, NC. National Toxicology Program, 231 pp. Toxicol. 1991;1: 475–490.
  • US Environmental Protection Agency. 3, 3′-Dichlorobenzidine. US Environmental Protection Agency, Integrated Risk Information System. March 7, 2011. Accessed 3, May 2011 (https://www.epa.gov/iris).
  • US Environmental Protection Agency. Health Effects Assessment Summary Tables. FY 1997 Update. Cincinnati, OH: Solid Waste and Emergency Response, Office of Emergency and Remedial Response; EPA/540/R-97-036, 2011.
  • Beyerbach A, Rothman N, Bhatnagar VK, Kashyap R, Sabbioni G. Hemoglobin adducts in workers exposed to benzidine and azo dyes. Carcinogenesis. 2006;27(8):1600–1606.
  • Hoffman D, Djordjevic MV, Hoffman I. The changing cigarette. Prevent Med. 1997;26:427–434.
  • Chiang TA, Pei-Fen W, Ying LS, Wang LF, Ko Y-C. Mutagenicity and aromatic amine content of fumes from heated cooking oil produced in Taiwan. Fd Chem Toxicol. 1999;37(2–3):125–134.
  • Richfield-Frantz N, Bailey JE, Jr, Bailey CJ. Determination of unsulfonated aromatic amines in FD&C Yellow No. 6 by the diazotization and coupling procedure followed by reversed-phase high-performance liquid chromatography. J Chromat. 1985;3:109–123.
  • Sittig M. Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed. Park Ridge, NJ: Noyes Publications; 1985.
  • US Department of Health and Human Services. The Newest Report on Carcinogens. 1998 Summary. Public Health Service, National Toxicology Program, Washington D.C.; 1998.
  • Frey A,,Meckelein B, Extermest D, Schmidt MA. A stable and highly sensitive 3, 3′,5, 5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J Immunol Methods. 2000;233:47–56.
  • Chung K-T, Chen S-C, Wong T-Y, Li Y-S, Wei C-I, Chou MW. Mutagenicity studies of benzidine and its analogs: Structure-activity relationships. Toxicol Sci. 2000;56(2):351–356. doi:10.1093/toxsci/56.2.351. PMID 10910993.
  • Holland VR, Saunders BC, Rose FL, Walpole AL. A safer substitute for benzidine in the detection of blood. Tetrahedron. 1974;30:3299–3302.
  • Yang J, Wang HH, Zhang H. One spot synthesis of silver nanoplates and charge-transfer complex nanofibers. J Phy Chem C. 2008;112(34):13065–13069.
  • Deshpande SS. Enzyme Immunoassays: From Concept to Product Development. New York: Chapman & Hall; 1996;169.
  • Prival MJ, Bell SJ, Mitchell VD, Peiperl MD, Vaughan VL. Mutagenicity of benzidine and benzidine-congener dyes and selected monoazo dyes in a modified Salmonella assay. Mutat Res. 1984;136:33–37.
  • Dillon D, Combes R, Zeiger E. Activation by caecal reduction of the azo dye D and C Red no.9 to bacterial mutagen. Mutagenesis. 1994;9:295–299.
  • Bonser GM, Clayson DB, Jull JW. The potency of 2-methylcholanthrene relative to other carcinogens on bladder implantation. Br J Cancer. 1963;17(2):235–241.
  • US EPA Health and Environmental Effects Profile for 1-Amino-2-naphthol and 1- amino-2-naphtol hydrochloride. Washington, DC: US Environmental Protection Agency; 1986; EPAS/600/X-87/029(NTISPB89120315).
  • Lin GHY, Solodar WE. Structure-activity relationship studies on the mutagenicity of some azo dyes in the Salmonella/microsome assay. Mutagenesis. 1988;3(4):311–315.
  • Shahin MM, Andrillon P, Goetz N, Bore P, Bugaut A, Kalopissis G. Studies on the mutagenicity of p-phenylenediamine in Salmonella typhimurium. Mutat Res. 1979;68:327–336.
  • Shahin MM. Mutagenic evaluation of nitroanilines and nitroaminophenol in Salmonella typhimurium. Internatl J Cosmet Sci. 1985;7:277–289.
  • Shahin M. The importance of analyzing structure-activity relationships in mutagenicity studies. Mutat Res. 1989;22:165–221.
  • Chung K-T, Murdock C, Stevens SE, Jr, Li Y-S, Huang TS, Wei C-I, Chou MW. Mutagenicity and toxicity studies of p-phenylenediamine and its derivatives. Toxicol Letters. 1995;81:23–32.
  • Watanabe T, Hirayama T, Fukui S. The mutagenic modulating of p-phenylenediamine on the oxidation of o- or m-phenylenediamine with hydrogen peroxide in the Salmonella test. Mutat Res. 1990;245:15–22.
  • Sontag JM. Carcinogenicity of substituted benzenediamine (phenylenedamine) on rats and mice. J Natl Canc Inst. 1981;66:591–602.
  • Rollison DE, Helzlsouer KJ, Pinney SM. Personal hair dye use and cancer: a systematic literature review and evaluation of exposure assessment in studies published since 1992. J Toxicol Environ Health. Part B. 2006;9(5):413–439.
  • Bolt HM, Golk K. The debate on carcinogenicity of permanent hair dyes: new insights. Crit Rev Toxicol. 2007;37(6):521–636.
  • Turesky RJ, Freeman JP, Holland RD, Nestorick DM, Miller DW, Ratnasinghe RL, Kadlubar FF. Identification of aminobiphenyl derivatives in commercial hair dyes. Chem Res Toxicol. 2003;16:1162–1173.
  • Collier SW, Storm JE, Jr, Bronaugh RL. Reduction of azo dyes during in vitro percutaneous absorption. Toxico Appl Pharmacol. 1993;118:73–79.
  • Watanabe T, Fukui HT. The mutagenic modulating effect of p-phenylenediamine on the oxidation of o- or m-phenylenediamine with hydrogen peroxide in the Salmonella test. Mutat Res. 1990;245:125–122.
  • Bomhard EM, Herbold BA. Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit Rev Toxicol. 2005;35:783–835.
  • Kahl T, Schröder K-W, Lawrence FR, Marshall WJ, Höke H, Jäckh R. “Aniline” in Ullmann's Encyclopedia of Industrial Chemistry. New York; John Wiley & Sons;2007.
  • NTP. Toxicology and carcinogenesis studies of p-nitroaniline (CAS No. 100-06-1) in B6F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser. 1993;418:1–203.
  • p-Nitroaniline: Evaluation of the carcinogenicity and genotoxicity. The Hague: Health Council of the Netherlands, publication no. Health Council of the Netherlands 2008/08OSH. ISBN 978-90-5549-694-5.
  • Osano O, Oladimeji OO, Kraak MH, Admiraal W. Teratogenic effects of amitraz, 2,4-dimethylaniline, and paraquat on developing frog (Xenopus) embryos. Arch Contam Toxicol. 2002;43:42–49.
  • Yoshimi N, Sugie S, Iwata H, Niwa K, Mori H, Hasida C, Shimizu H. The genotoxicity of a variety of aniline derivatives in a DNA repair test with primary cultured rat hepatocytes. Mutat Res. 1988;206:183–191.
  • Danflora N. The genetic toxicology of ortho-toluidine. Mutat Res. 1991;258:207–236.
  • Sellers C, Markowitz S. Reevaluating the carcinogenicity of ortho-toluidine:a new conclusion and its implications. Regu Toxicol Pharmacol. 1992;16:301–317.
  • Anon. Cancer of the bladder among workers in aniline factories. Geneva, Switzerland: International Labor Office, Studies and Reports Series F. No.1 1920.
  • Richter E. Biomonitoring of human exposure to arylamines-historical and future aspects with special emphasis on ortho-toluidine. Front in Biosci Elite. 2015;7:305–321.
  • IARC. Ortho-toluidine. IARC Monogr Eval Carcinog Risks Hum. 2000;77:267–322.
  • Carreon T, Hein M, Viet SM, Hanley KW, Ruder AM, Ward EM. Increased bladder cancer risk among workers exposed to o-toluidine and aniline. A reanalysis. Occup Environ Med. 2010;67:348–350.
  • EurekAlert. The Global Source for Science News, Public Releaser, July 19, 2006. Deutsche Forschungsgemeinschaft. DFG presents. The 2006 List of MAK and BAT Values List. Focus on health protection during pregnancy. Weinheim, Germany: Wiley-VCH Verlag; GmbH, D-69451..
  • IARC. International Agency for Research on Cancer: some aromatic amines organic Dyes and related exposures. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2010;1–692. Lyon, France.
  • Chung K-T, Kirkovsaky L, Kirkovsky A, Purcell WP. Review of mutagenicity of monocyclic aromatic amines: quantitative structure-activity relationships. Mutat Res. 1997;387:1–16.
  • Morton LO, Youssef AF, Lloyd E, Kiopes AL, Goldsworth TL, Fort FL. Evaluation of carcinogenic responses in the Eker rat following short-term exposure to selected nephrotoxins and carcinogens. Toxicol Pathol. 2002;30(5):559–564.
  • National Toxicology Program. Abstract for TR-169-2-Nitro-p-phenlenediamine (CASRN 5307-14-2), Reported date, 1979. Bioassay of 2-Nitro-p-phenylenediamine for possible carcinogenicity (CAS No. 5307-14-2), FDA.
  • Commission of the European Communities. Commission Directive 91/184/EEC of March 12, 1991. Off 1 Eu Commun. 1991;L91:59–62.
  • NTP toxicology and carcinogenesis studies of 2-amino-4-nitrophenol (Cas No. 99-57-0) in F344/N rats and B6C3F1 mice (Gavage studies). Natl Toxicol Program Tech Rep Ser. 1988;339:1–170.
  • IARC. Some aromatic amines, anthraquinones and nitroso compounds and inorganic fluorides used in drinking-water and dental preparations. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Lyon, France. 1982;27:103–117.
  • Bioassay of 2, 4-diaminoanisole sulfate for possible carcinogenicity Tech Rep Ser No. 84; DHEW Publ. No. (NIH). National Cancer Institute. Washington DC: Government Printing Office; 1978;78–1334.
  • IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Thyrotropic Agents. Lyon, France; 2001;79:1–780.
  • Matsumoto M, Suzuki M, Kano M, Aiso S, Yamazaki K, Fukushima S. Carcinogenicity of ortho-phenylenediamine dihydrochloride in rats and mice by two-source drinking water treatment. Arch Toxicol. 2012;86(5):791–804.
  • Gosselin EE, Smith RP, Hodge HC. Clinical Toxicology of Commercial Products. 5th ed. Baltimore: Williams and Wilkins; 1984;11–210.
  • Srrift AF, Arce GT, Krahn DF, O'Neil RM, Reynolds VL. Evaluation of carbendazime for gene mutations in the Salmonella/Ames plate incorporation assay: the role of aminophenazine impurities. Mutat Res.1994;321:43–56.
  • Ames BN, Kammen H, Yamasaki E. Hair dyes are mutagenic identification of a variety of mutagenic ingredients. Proc Natl Acad Sci. U.S.A. 1975;72:2423–2427.
  • Renault J, Baron M, Mailliet P, Giorgirenaul S, Paoletti C, Cros S. Heterocyclic Quinones 2. Quinoxaline-5, 6-(and 5, 8-)-diones-potential antitumoral Agents. Eur J Med Chem. 1981;16:545–550.
  • Deshpande SS. Enzyme Immunoassays: From Concept to Product Development. New York: Chapman & Hall; 1996;169. ISBN 978-0-412-05601-7.
  • 1, 3-Benzenediamine from HSDB 5384 NIH. US National Library of Medicine Toxinet. DataBase. http://toxnet.nih/gov.gov/cgi.bin/sis.search/r?dbs+hsdb:@tem+@rel+108-45-2
  • Thyssen JP, White JM, European Society of Contact Dermatitis. Epidemiological data on consumer allergy to p-phenylenediamine. Contact Dermat. 2008;59:327–343.
  • Kleniewska D, Maibach H. Allergenicity of aminobenzene compounds:structure- function relationships. Derm Beruf Umwelt. 1980;28:11–13.
  • ATSDR. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Benzidine. Atlanta: US Public Health Service, US Department of Health and Human Services; 1995.
  • US Environmental Protection Agency. Integrated Risk Information System (IRIS) on Benzidine. Washington, DC: National Center for Environmental Assessment, Office of Research and Development; 1999.
  • NTP. Toxicology and Carcinogenesis Studies of Naphthalene (Cas No. 91-20-3) in B6C3F1 Mice (inhalation studies). National Institutes of Health Technical Report Series. US Department of Health and Human Services Public Service; 1992; No. 410.
  • Elhkim MO, Héraud F, Bemrah N, Gauchard F, Lorino T, Lambre C, Fre'my JM, Poul JM. New considerations regarding the risk assessment on Tartrazine: An update toxicological assessment, intolerance reactions and maximum theoretical daily intake in France. Reg Toxicol. Pharmacol. 2007;47(3):308–316.
  • United States Food and Drug Administration. Does FDA& C Yellow No. 5 cause any allergic reactions? Archived from the original on 2007-10-09. Retrieved October 20, 2007 (http://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/DocumentArchives/default.htm).
  • Dipalma JR. Tartrazine sensitivity. American Family Physician. 1990;42(5):1347–1350.
  • Ardern KD, Ram FS. Tartrazine exclusion for allergic asthma. Cochrane Database Syst Rev. 2001;(4):CD000460.
  • McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J Food additives and hyperactive behavior in 3-source old and 8/9-source-old children in the community: a randomized, double-blinded, placebo-controlled trial.The Lancet.2007;370(9598): 1560–1567.
  • EFSA. Assessment of the results of the study by McCann et al. (2007) on the effect of some colours and sodium benzoate on children's behaviour. The EFSA J. 2008; 660:1–53.
  • Rowe KS, Rowe KJ. Synthetic food coloring and behavior: a dose response in a double- blind, placebo controlled, repeated-measures study. J Pediatri. 1994;12:691–698.
  • Table III of section B.16.100 http://law.lois.justice.gc.ca/eng/regulations/C.R.C%2C_c.870/page158.html#docCont.Food.Drug.Regulations.
  • Further details can be found on the EFSA food additives database page on tartrazine. http://webgate:ec.europa.eu/sanco_foods/main/?event=substance.view&identifier+7
  • EFSA Panel on Food Additives and Nutrient Sources added to Food. Scientific Opinion on the re-evaluation Tartrazine (E 102). In European Food Safety Authority. EFSA Journal. 2009;7(11):1331–1382.
  • Sulfa Drugs Allergy—Sulfa Bactrim Drug Allergies. Allergies.about.com. Retrieved January 17, 2014.
  • Harrison's Principles of Internal Medicine, 13th ed. McGraw-Hill; 1994;604.
  • Stahlmann R, Wegner M, Riecke K, Kruse MT, Platzek T. Sensitizing potential of four textile dyes and some of their metabolites in a modified local lymph node assay. Toxicol. 2006;219(1–3):113–123.
  • Joe EK. Allergic contact dermatitis to textile dyes. Dermat Online J. 2007;7(1):9.
  • Mathur N, Bhatnagar P, Sharma P. Review of the mutagenicity of textile products. Universal J Environ Res Technol. 2012;2(2):1–18.
  • Pratt M, Taraska V. Disperse blue dyes 106 and 124 are common causes of textile dermatitis and should serve as screening allergens for this condition. Am J Contact Dermat. 2000;11:30–41.
  • Hartman CP, Fulk GE, Andrews AW. Azo reduction of trypan blue a known carcinogen by a cell-free extract of a human intestinal anaerobes. Mutat Res. 1978;58(2–3):25–132.
  • Sweeney EA, Chipman JK, Forsythe SJ. Evidence for direct-acting oxidative genotoxicity by reduction products of azo dyes. Environ Health Perspect. 1994;102: 119–122.
  • Dönbak L, Rencüzogullari E, Topaktas M, Sahin G. A biomonitoring study on the workers from textile dyeing plants. Russian J Genet. 2006;42;613–618.
  • Yoshida O, Miyakawa M. Etiology of bladder cancer: Metabolic aspects. In Analytical and Experimental Epidemiology of Cancer” Proceedings of the Third International Symposium on the Princess Takmutsu Cancer Research Fund Japan; 1973.
  • Usha M. Impact analysis of industries in Sanganer. P. G. Diploma Field Study Report Submitted to Indira Gandhi Center for HEEPS, University of Rajasthan, Jaipur India; 1989.
  • Pelclova D, Rossner P, Pickova J. Chromosome aberrations in rotogravure printing plant workers. Mutat Res. 1990;245:299–303.
  • Moirkawa Y, Shiomi K, Ishihara Y, Matsuura N. Triple primary cancers involving kidney, urinary bladder and liver in a dye workers. Am J Indus Med. 1997;3:44–49.
  • Jin XC, Liu GQ, Xu ZH, Tao WY. Decolourization of a dye effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol. 2007;74:239–243.
  • Saratable RC, Saratable JG, Chang DS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Engineers. 2011;42(1):138–157.
  • Kusic H, Juretic D, Koprivance N, Marion V, Božié AL. Photooxidation processes for Azo dye in aqueous media: Modeling of degradation kinetics and ecological parameters evaluation. J Hazard Material. 2011;185(2–3):1558–1568.
  • Pandy A, Singh P, Lyengaer L. Bacterial decolorization and degradation of azo dyes. Internat Biodeter Biodegrad. 2007;59:73–84.
  • Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile dye decontaining effluents: a review. Biosources Technol. 1996;58(3):217–227.
  • Bae JS, Freemann HS. Aquatic toxicity evaluation of new direct dyes to the Daphnia magna. Dyes Pigment. 2007;73(11):1937–1945.
  • Chequer FMD, Dorta DJ, deOlivera DP. Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks? In Advances in Treating Textile Effluent. Prof. Peter Hauser, ed. 2011;1–23. http://www.intechopen.com/books/advances-treating-textile-effulent/azo-dyes-and-theirmetabolites.does-the-discharge-of-the.azo-dye-into-water-bodies-the.represent-human.and.ecological.risk
  • Chang JS, Chou C, Chen SY. Decolorization of azo dyes with immobilized Psudomonas luteola. Process Biochem. 2001;36(8–9):757–763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.