Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 37, 2019 - Issue 2
257
Views
9
CrossRef citations to date
0
Altmetric
Articles

Separation of charge carriers and generation of reactive oxygen species by TiO2 nanoparticles mixed with differently-coated gold nanorods under light irradiation

, , , , , & show all

References

  • Ben-Shahar Y, Banin U. Hybrid semiconductor–metal nanorods as photocatalysts. In: Photoactive Semiconductor Nanocrystal Quantum Dots. Cham: Springer; 2017:149–174.
  • Li S, Cai J, Wu X, et al. Sandwich-like TiO2@ ZnO-based noble metal (Ag, Au, Pt, or Pd) for better photo-oxidation performance: synergistic effect between noble metal and metal oxide phases. Appl Surf Sci. 2018;443:603–612. doi:10.1016/j.apsusc.2018.03.017.
  • Wenderich K, Mul G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev. 2016;116(23):14587–14619. doi:10.1021/acs.chemrev.6b00327.
  • Kochuveedu ST, Jang YH, Kim DH. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev. 2013;42(21):8467–8493. doi:10.1039/c3cs60043b.
  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B. 2012;125:331–349. doi:10.1016/j.apcatb.2012.05.036.
  • Gao C, Wang J, Xu H, et al. Coordination chemistry in the design of heterogeneous photocatalysts. Chem Soc Rev. 2017;46(10):2799–2823. doi:10.1039/c6cs00727a.
  • Zhang G, Kim G, Choi W. Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy Environ Sci. 2014;7(3):954–966. doi:10.1039/c3ee43147a.
  • Banin U, Ben-Shahar Y, Vinokurov K. Hybrid semiconductor–metal nanoparticles: from architecture to function. Chem Mater. 2014;26(1):97–110. doi:10.1021/cm402131n.
  • He W, Jia H, Yang D, et al. Composition directed generation of reactive oxygen species in irradiated mixed metal sulfides correlated with their photocatalytic activities. ACS Appl Mater Interfaces. 2015;7(30):16440–16449. doi:10.1021/acsami.5b03626.
  • Dozzi MV, Selli E. Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C. 2013;14:13–28. doi:10.1016/j.jphotochemrev.2012.09.002.
  • Liu M, Inde R, Nishikawa M, et al. Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts. ACS Nano. 2014;8(7):7229–7238. doi:10.1021/nn502247x.
  • Furube A, Hashimoto S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Mater. 2017;9(12):e454. doi:10.1038/am.2017.191.
  • Yu X, Liu F, Bi J, et al. Improving the plasmonic efficiency of the Au nanorod -semiconductor photocatalysis toward water reduction by constructing a unique hot-dog nanostructure. Nano Energy. 2017;33:469–475. doi:10.1016/j.nanoen.2017.02.006.
  • Devi LG, Kavitha R. A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci. 2016;360:601–622. doi:10.1016/j.apsusc.2015.11.016.
  • Atta S, Celik FE, Fabris L. Enhancing hot electron generation and injection in the NIR via rational design and controlled synthesis of TiO2-gold nanostructures. Faraday Discuss. 2019. doi:10.1039/C8FD00152A.
  • Truppi A, Petronella F, Placido T, et al. Gram-scale synthesis of UV–vis light active plasmonic photocatalytic nanocomposite based on TiO2/Au nanorods for degradation of pollutants in water. Appl Catal B. 2019;243:604–613.
  • Jones S, Pramanik A, Sweet C, et al. Recent progress on the development of anisotropic gold nanoparticles: design strategies and growth mechanism. J Environ Sci Health C. 2017;35(1):47–66. doi:10.1080/10590501.2017.1280264.
  • Wu B, Liu D, Mubeen S, et al. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc. 2016;138(4):1114–1117. doi:10.1021/jacs.5b11341.
  • Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6(6):5164–5173. doi:10.1021/nn300934k.
  • Saito H, Nosaka Y. Mechanism of singlet oxygen generation in visible-light-induced photocatalysis of gold-nanoparticle-deposited titanium dioxide. J Phys Chem C. 2014;118(29):15656–15663. doi:10.1021/jp502440f.
  • Qi K, Cheng B, Yu J, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd. 2017;727:792–820. doi:10.1016/j.jallcom.2017.08.142.
  • He W, Wu H, Wamer WG, et al. Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl Mater Interfaces. 2014;6(17):15527–15535. doi:10.1021/am5043005.
  • Wang C, Yin L, Zhang L, et al. Platinum-nanoparticle-modified TiO2 nanowires with enhanced photocatalytic property. ACS Appl Mater Interfaces. 2010;2(11):3373–3377. doi:10.1021/am100834x.
  • Rhoderick EH. Metal-semiconductor contacts. IEE Proc I Solid State Electron Devices UK. 1982;129(1):1. doi:10.1049/ip-i-1.1982.0001.
  • Ding D, Liu K, He S, et al. Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett. 2014;14(11):6731–6736. doi:10.1021/nl503585m.
  • Cheng K, Cheng G, Wang S, et al. Surface states dominative Au Schottky contact on vertical aligned ZnO nanorod arrays synthesized by low-temperature growth. New J Phys. 2007;9(7):214. doi:10.1088/1367-2630/9/7/214.
  • He W, Kim HK, Wamer WG, et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc. 2014;136(2):750–757. doi:10.1021/ja410800y.
  • Jiang X, He W, Zhang X, et al. Light-induced assembly of metal nanoparticles on ZnO enhances the generation of charge carriers, reactive oxygen species and antibacterial activity. J Phys Chem C. 2018;122(51):29414–29425.
  • He W, Liu Y, Wamer WG, et al. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal. 2014;22(1):49–63. doi:10.1016/j.jfda.2014.01.004.
  • Wang SY, Chen CT, Yin JJ. Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem. 2010;120(1):199–204. doi:10.1016/j.foodchem.2009.10.007.
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957–1962. doi:10.1021/cm020732l.
  • Wang X, Kafizas A, Li X, et al. Transient absorption spectroscopy of anatase and rutile: the impact of morphology and phase on photocatalytic activity. J Phys Chem C. 2015;119(19):10439–10447. doi:10.1021/acs.jpcc.5b01858.
  • Reddy KR, Karthik KV, Prasad SBB, et al. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 2016;120:169–174. doi:10.1016/j.poly.2016.08.029.
  • Li YF, Selloni A. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 2016;6(7):4769–4774. doi:10.1021/acscatal.6b01138.
  • Schrauben JN, Hayoun R, Valdez CN, et al. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 2012;336(6086):1298–1301. doi:10.1126/science.1220234.
  • He W, Jia H, Cai J, et al. Production of reactive oxygen species and electrons from photoexcited ZnO and ZnS nanoparticles: a comparative study for unraveling their distinct photocatalytic activities. J Phys Chem C. 2016;120(6):3187–3195. doi:10.1021/acs.jpcc.5b11456.
  • Finkelstein E, Rosen GM, Rauckman EJ. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts. Mol Pharmacol. 1982;21(2):262–265.
  • Jiang B, Dai D, Yao Y, et al. The coupling of hemin with persistent free radicals induces a nonradical mechanism for oxidation of pollutants. Chem Commun (Camb). 2016;52(61):9566–9569. doi:10.1039/c6cc02973f.
  • Cui Y, Ding Z, Liu P, et al. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Chem Phys. 2012;14(4):1455–1462. doi:10.1039/c1cp22820j.
  • He W, Zhou YT, Wamer WG, et al. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012;33(30):7547–7555. doi:10.1016/j.biomaterials.2012.06.076.
  • He W, Zhou YT, Wamer WG, et al. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013;34(3):765–773. doi:10.1016/j.biomaterials.2012.10.010.
  • Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon. 2014;8(2):95. doi:10.1038/nphoton.2013.238.
  • Wu K, Rodríguez-Córdoba WE, Yang Y, et al. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. Nano Lett. 2013;13(11):5255–5263. doi:10.1021/nl402730m.
  • Zhang H, Jiang X, Cao G, et al. Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. J Environ Sci Health C. 2018;36(2):84–97. doi:10.1080/10590501.2018.1450194.
  • Liu Y, Wu H, Li M, et al. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 2014;6(20):11904–11910. doi:10.1039/c4nr03848g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.