Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 37, 2019 - Issue 2
461
Views
17
CrossRef citations to date
0
Altmetric
Article

Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles

, , , , , , & show all

References

  • Valsesia A, Desmet C, Colpo P, Rossi F (Inventors); European Union represented by European Commission (Assignee). Screening of nanoparticle properties. United States patent application US 15/571,808. 2018.
  • Kutwin M, Sawosz E, Jaworski S, et al. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Arch Med Sci. 2017;13(6):1322. doi: 10.5114/aoms.2016.58925.
  • Chen Y, Yang D, Yoon YJ, et al. Hairy uniform permanently ligated hollow nanoparticles with precise dimension control and tunable optical properties. J Am Chem Soc. 2017;139(37):12956–12967. doi: 10.1021/jacs.7b04545.
  • Pourmasoud S, Sobhani-Nasab A, Behpour M, Rahimi-Nasrabadi M, Ahmadi F. Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J Mol Struct. 2018;1157:607–615. doi: 10.1016/j.molstruc.2017.12.077.
  • Liu Y, Lin D, Yuen PY, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater. 2017; 29(10):1605531. doi: 10.1002/adma.201605531.
  • Li J, Cai J, Jia H, et al. Formation of iron oxide/Pd hybrid nanostructures with enhanced peroxidase-like activity and catalytic reduction of 4-nitrophenol. J Environ Sci Health, Part C. 2017;35(3):159–172. doi: 10.1080/10590501.2017.1328839.
  • Hu Y, Cheng H, Zhao X, et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano. 2017;11(6):5558–5566. doi: 10.1021/acsnano.7b00905.
  • Olgun FA, Üzer A, Ozturk BD, Apak R. A novel cerium oxide nanoparticles-based colorimetric sensor using tetramethyl benzidine reagent for antioxidant activity assay. Talanta. 2018; 182:55–61. doi: 10.1016/j.talanta.2018.01.047.
  • Cao GJ, Jiang X, Zhang H, Zheng J, Croley TR, Yin JJ. Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers. J Environ Sci Health, Part C.. 2017;35(4):223–238. doi: 10.1080/10590501.2017.1391516.
  • Zhang Y, Park SJ. Au–pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J Catal. 2017;355:1–10. doi: 10.1016/j.jcat.2017.08.007.
  • Zamora-Gálvez A, Mayorga-Matinez CC, Parolo C, Pons J, Merkoçi A. Magnetic nanoparticle-molecular imprinted polymer: a new impedimetric sensor for tributyltin detection. Electrochem Commun. 2017;82:6–11. doi: 10.1016/j.elecom.2017.07.007.
  • Parlak O, İncel A, Uzun L, Turner AP, Tiwari A. Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron. 2017;89(Pt 1):545–550. doi: 10.1016/j.bios.2016.03.024.
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577doi: 10.1038/nnano.2007.260.
  • Liu Q, Chen P, Xu Z, et al. A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sens Actuators, B. 2017;251:339–348. doi: 10.1016/j.snb.2017.05.069.
  • Vallabani NS, Karakoti AS, Singh S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH. Colloids Surf., B. 2017;153:52–60. doi: 10.1016/j.colsurfb.2017.02.004.
  • Choleva TG, Gatselou VA, Tsogas GZ, Giokas DL. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchimica Acta. 2018; 185(1):22.
  • Zhang H, Jiang X, Cao G, et al. Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. J. Environ. Sci. Health, Part C. 2018;36(2):84–97. doi: 10.1080/10590501.2018.1450194.
  • Su L, Dong W, Wu C, et al. The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: mechanistic understanding and colorimetric biosensing. Anal Chim Acta. 2017;951:124–132. doi: 10.1016/j.aca.2016.11.035.
  • Guo L, Mao L, Huang K, Liu H. Pt–Se nanostructures with oxidase-like activity and their application in a selective colorimetric assay for mercury (II). J Mater Sci. 2017;52(18):10738–10750. doi: 10.1007/s10853-017-1181-8.
  • Liu CP, Wu TH, Liu CY, et al. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small. 2017;13(26):1700278. doi: 10.1002/smll.201700278.
  • Baldim V, Bedioui F, Mignet N, Margaill I, Berret JF. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale. 2018;10(15):6971–6980. doi: 10.1039/c8nr00325d.
  • Korschelt K, Ragg R, Metzger CS, et al. Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale. 2017; 9(11):3952–3960. doi: 10.1039/c6nr09810j.
  • Dai Y, Yang Z, Cheng S, et al. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Adv Mater. 2018;30(8):1704877. doi: 10.1002/adma.201704877.
  • Wu Y, Chen Y, Li Y, Huang J, Yu H, Wang Z. Accelerating peroxidase-like activity of gold nanozymes using purine derivatives and its application for monitoring of occult blood in urine. Sens Actuators, B. 2018;270:443–451. doi: 10.1016/j.snb.2018.05.057.
  • Yang YC, Wang YT, Tseng WL. Amplified peroxidase-like activity in iron oxide nanoparticles using adenosine monophosphate: Application to urinary protein sensing. ACS Appl Mater Interfaces. 2017;9(11):10069–10077. doi: 10.1021/acsami.6b15654.
  • Lin T, Zhong L, Chen H, et al. A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets. Microchim Acta. 2017;184(4):1233–1237. doi: 10.1007/s00604-017-2147-x.
  • Cui M, Zhou J, Zhao Y, Song Q. Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens Actuators. B. 2017;243:203–210. doi: 10.1016/j.snb.2016.11.145.
  • Alizadeh N, Hallaj R, Salimi A. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosens Bioelectron. 2017;94:184–192. doi: 10.1016/j.bios.2017.02.039.
  • Liu J, Jiang X, Wang L, et al. Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 2015;8(12):4024–4037. doi: 10.1007/s12274-015-0904-x.
  • Zhu J, Yang X, Fan F, Li Y. Factors affecting the determination of iron species in the presence of ferric iron. Appl Water Sci. 2018;8(8):228.
  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M. Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta. 1974;21(4):314–318. doi: 10.1016/0039-9140(74)80012-3.
  • Leao DJ, Junior MM, Brandao GC, Ferreira SL. Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta. 2016;153:45–50. doi: 10.1016/j.talanta.2016.02.023.
  • Trindade AS, Dantas AF, Lima DC, Ferreira SL, Teixeira LS. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry. Food Chem. 2015;185:145–150. doi: 10.1016/j.foodchem.2015.03.118.
  • Duffy LL, Osmond-McLeod MJ, Judy J, King T. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control. 2018;92:293–300. doi: 10.1016/j.foodcont.2018.05.008.
  • Samu GF, Veres Á, Tallósy SP, et al. Photocatalytic, photoelectrochemical, and antibacterial activity of benign-by-design mechanochemically synthesized metal oxide nanomaterials. Catalysis Today. 2017;284:3–10. doi: 10.1016/j.cattod.2016.07.010.
  • Qi K, Cheng B, Yu J, Ho W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd. 2017;727:792–820. doi: 10.1016/j.jallcom.2017.08.142.
  • Tian X, Jiang X, Welch C, et al. Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Appl Mater Interf. 2018;10(10):8443–8450. doi: 10.1021/acsami.7b17274.
  • Chang ZM, Wang Z, Lu MM, et al. Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids Surf B Biointerf. 2017;157:199–206. doi: 10.1016/j.colsurfb.2017.05.079.
  • Chen Z, Yang P, Yuan Z, Guo J. Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa. Sci Rep. 2017;7(1):7398.
  • Kaviyarasu K, Geetha N, Kanimozhi K, et al. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater Sci Eng C. 2017;74:325–333. doi: 10.1016/j.msec.2016.12.024.
  • Belenky P, Jonathan DY, Porter CB, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 2015;13(5):968–980. doi: 10.1016/j.celrep.2015.09.059.
  • Van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 2017;25(6):456–466. doi: 10.1016/j.tim.2016.12.008.
  • Lobritz MA, Belenky P, Porter CB, et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proceedings of the National Academy of Sciences. 2015, 201509743.
  • Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND. Defining metal ion inhibitor interactions with recombinant human H- and L-chain ferritins and site-directed variants: an isothermal titration calorimetry study . J Biol Inorg Chem. 2003;8(4):489–497. doi: 10.1007/s00775-003-0455-6.
  • Walling C, Goosen A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. J Am Chem Soc. 1973;95(9):2987–2991. doi: 10.1021/ja00790a042.
  • Wang S. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 2008;76(3):714–720. doi: 10.1016/j.dyepig.2007.01.012.
  • Hong H, Wu H, Chen J, et al. Cytotoxicity induced by iodinated haloacetamides via ROS accumulation and apoptosis in HepG-2 cells. Environ Pollut. 2018;242:191–197. doi: 10.1016/j.envpol.2018.06.090.
  • Avalos A, Haza AI, Mateo D, Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol. 2014;34(4):413–423. doi: 10.1002/jat.2957.
  • Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Therap. 2018;1(3):1700033. doi: 10.1002/adtp.201700033.
  • Kadiyala U, Kotov NA, VanEpps JS. Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr Pharm Des. 2018;24(8):896–903. doi: 10.2174/1381612824666180219130659.
  • Hoseinnejad M, Jafari SM, Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol. 2018; 44(2):161–181. doi: 10.1080/1040841X.2017.1332001.
  • Chang ZM, Wang Z, Lu MM, et al. Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids Surf B Biointerf. 2017;157:199–206. doi: 10.1016/j.colsurfb.2017.05.079.
  • Chen Z, Yang P, Yuan Z, Guo J. Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa. Sci Rep. 2017;7(1):7398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.