Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 37, 2019 - Issue 2
268
Views
5
CrossRef citations to date
0
Altmetric
Articles

Influences of simulated gastrointestinal environment on physicochemical properties of gold nanoparticles and their implications on intestinal epithelial permeability

, , , , , & show all

References

  • Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products. Toxicology 2012;291(1–3):10–17. doi: 10.1016/j.tox.2011.11.004.
  • Chaudhry Q, Scotter M, Blackburn J, et al. Applications and implications of nanotechnologies for the food sector. Food Addit Contam. 2008;25(3):241–258. doi: 10.1080/02652030701744538.
  • Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko OV. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environ Sci Technol. 2012;46(17):9753–9760. doi: 10.1021/es3025325.
  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–1671. doi: 10.1039/C0CS00018C.
  • Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44(6):2169–2175. doi: 10.1021/es9035557.
  • Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4(11):6903–6913. doi: 10.1021/nn102272n.
  • Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe S. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354. doi: 10.1152/physrev.00040.2012.
  • He W, Zhou YT, Wamer WG, et al. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013;34(3):765–773. doi: 10.1016/j.biomaterials.2012.10.010.
  • Zhang H, Jiang X, Cao G, et al. Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. J Environ Sci Health C. 2018;36(2):84–97. doi: 10.1080/10590501.2018.1450194.
  • Liu Y, Wu H, Li M, Yin J-J, Nie Z. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 2014;6(20):11904–11910. doi: 10.1039/C4NR03848G.
  • Wen T, He W, Chong Y, Liu Y, Yin J-J, Wu X. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications. Phys Chem Chem Phys. 2015;17(38):24937–24943. doi: 10.1039/C5CP04046A.
  • Zhu S, Jiang X, Boudreau MD, et al. Orally administered gold nanoparticles protect against colitis by attenuating toll-like receptor 4-and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. J Nanobiotechnology 2018;16(1):86. doi: 10.1186/s12951-018-0415-5.
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989;96(3):736–749. doi: 10.1016/0016-5085(89)90897-4.
  • Pinto M. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 1983;47:323–330.
  • Ude VC, Brown DM, Viale L, Kanase N, Stone V, Johnston HJ. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity. Barrier Integrity, Cytokine Production and Nanomaterial Penetration. Part Fibre Toxicol 2017;14(1):31. doi: 10.1186/s12989-017-0211-7.
  • Uskokovic V, Lee K, Lee PP, Fischer KE, Desai TA. Shape effect in the design of nanowire-coated microparticles as transepithelial drug delivery devices. ACS Nano. 2012;6(9):7832–7841. doi: 10.1021/nn3019865.
  • Gu Y-J, Cheng J, Lin C-C, Lam YW, Cheng SH, Wong W-T. Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol. 2009;237(2):196–204. doi: 10.1016/j.taap.2009.03.009.
  • Tripathy SK, Woo JY, Han C-S. Highly selective colorimetric detection of hydrochloric acid using unlabeled gold nanoparticles and an oxidizing agent. Anal Chem. 2011;83(24):9206–9212. doi: 10.1021/ac202500m.
  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–6093. doi: 10.1039/c3cs35486e.
  • Cao G-J, Jiang X, Zhang H, Zheng J, Croley TR, Yin J-J. Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers. J Environ Sci Health C. 2017;35(4):223–238. doi: 10.1080/10590501.2017.1391516.
  • Li J, Cai J, Jia H, et al. Formation of iron oxide/Pd hybrid nanostructures with enhanced peroxidase-like activity and catalytic reduction of 4-nitrophenol. J Environ Sci Health C. 2017;35(3):159–172. doi: 10.1016/j.biomaterials.2015.01.012.
  • He W, Wamer W, Xia Q, Yin J-j, Fu PP. Enzyme-like activity of nanomaterials. J Environ Sci Health C. 2014;32(2):186–211. doi: 10.1080/10590501.2014.907462.
  • D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007;8(10):813. doi: 10.1038/nrm2256.
  • McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–6055.
  • Zhao H, Joseph J, Zhang H, Karoui H, Kalyanaraman B. Synthesis and biochemical applications of a solid cyclic nitrone spin trap: a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radic Biol Med. 2001;31(5):599–606. doi: 10.1016/S0891-5849(01)00619-0.
  • Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Letters. 2000;486(1):10–13. doi: 10.1016/S0014-5793(00)02197-9.
  • Ueda J-i, Saito N, Shimazu Y, Ozawa T. A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Arch Biochem Biophys. 1996;333(2):377–384. doi: 10.1006/abbi.1996.0404.
  • Jiang X, Wu Y, Gray P, et al. Influence of gastrointestinal environment on free radical generation of silver nanoparticles and implications for their cytotoxicity. NanoImpact 2018;10:144–152. doi: 10.1016/j.impact.2018.04.001.
  • Li J, Liu W, Wu X, Gao X. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015;48:37–44. doi: 10.1016/j.biomaterials.2015.01.012.
  • Chen H, Kou X, Yang Z, Ni W, Wang J. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008;24(10):5233–5237. doi: 10.1021/la800305j.
  • Rao C, Kulkarni G, Thomas PJ, Edwards PP. Size-dependent chemistry: properties of nanocrystals. In: Gopalakrishnan J, Kulkarni Giridhar U, eds. Advances in Chemistry: A Selection of CNR Rao's Publications (1994–2003), World Scientific: 2003; pp. 227–233.
  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res. 2013;46(3):622–631. doi: 10.1021/ar300031y.
  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011;7(10):1322–1337. doi: 10.1002/smll.201100001.
  • Cheng X, Tian X, Wu A, et al. Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Appl Mater Interfaces. 2015;7(37):20568–20575. doi: 10.1021/acsami.5b04290.
  • Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6(7):5845–5857. doi: 10.1021/nn300223w.
  • Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–2282. doi: 10.1039/C1CS15166E.
  • Wang L, Jiang X, Ji Y, et al. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale 2013;5(18):8384–8391. doi: 10.1039/c3nr01626a.
  • Qiu Y, Liu Y, Wang L, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010;31(30):7606–7619. doi: 10.1016/j.biomaterials.2010.06.051.
  • Mullin JM, Agostino N, Rendon-Huerta E, Thornton JJ. Keynote review: epithelial and endothelial barriers in human disease. Drug Discov Today. 2005;10(6):395–408. doi: 10.1016/S1359-6446(05)03379-9.
  • Sawada N, Murata M, Kikuchi K, et al. Tight junctions and human diseases. Med Electron Microsc. 2003;36(3):147–156. doi: 10.1007/s00795-003-0219-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.