297
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Structural characterization and thermal degradation of poly(methylmethacrylate)/zinc oxide nanocomposites

, , ORCID Icon, &
Pages 189-196 | Received 29 Sep 2018, Accepted 21 Nov 2018, Published online: 30 Jan 2019

References

  • Lu, Y.; Biswas, M. C.; Guo, Z.; Jeon, J.-W.; Wujcik, E. K. Recent Developments in Bio-monitoring via Advanced Polymer Nanocomposite-based Wearable Strain Sensors. Biosens Bioelectron. 2019, 123, 167–177. DOI:10.1016/j.bios.2018.08.037.
  • Zhou, B.; Li, Y.; Zheng, G.; Dai, K.; Liu, C.; Ma, Y.; Zhang, J.; Wang, N.; Shen, C.; Guo, Z. Continuously Fabricated Transparent Conductive Polycarbonate/carbon Nanotube Nanocomposite Films for Switchable Thermochromic Applications. J. Mater. Chem. C 2018, 6, 8360–8371. DOI:10.1039/C8TC01779D.
  • Li, Y.; Zhou, B.; Zheng, G.; Liu, X.; Li, T.; Yan, C.; Cheng, C.; Dai, K.; Liu, C.; Shen, C. Continuously Prepared Highly Conductive and Stretchable SWNT/MWNT Synergistically Composited Electrospun Thermoplastic Polyurethane Yarns for Wearable Sensing. J. Mater. Chem. C 2018, 6, 2258–2269. DOI:10.1039/C7TC04959E.
  • Guan, X.; Zheng, G.; Dai, K.; Liu, C.; Yan, X.; Shen, C.; Guo, Z. Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility. ACS Appl. Mater. Interfaces 2016, 8, 14150–14159. DOI:10.1021/acsami.6b02888.
  • Liu, H.; Huang, W.; Yang, X.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Organic Vapor Sensing Behaviors of Conductive Thermoplastic Polyurethane–graphene Nanocomposites. J. Mater. Chem. C 2016, 4, 4459–4469. DOI:10.1039/C6TC00987E.
  • Liu, H.; Dong, M.; Huang, W.; Gao, J.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Lightweight Conductive Graphene/thermoplastic Polyurethane Foams with Ultrahigh Compressibility for Piezoresistive Sensing. J. Mater. Chem. C 2017, 5, 73–83. no DOI:10.1039/C6TC03713E.
  • Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. no DOI:10.1039/C5TC02751A.
  • Wang, C.; Zhao, M.; Li, J.; Yu, J.; Sun, S.; Ge, S.; Guo, X.; Xie, F.; Jiang, B.; Wujcik, E. K.; et al. Silver Nanoparticles/graphene Oxide Decorated Carbon Fiber Synergistic Reinforcement in Epoxy-based Composites. Polymer 2017, 131, 263–271. DOI:10.1016/j.polymer.2017.10.049.
  • Cui, X.; Zhu, G.; Pan, Y.; Shao, Q.; Zhao, C.; Dong, M.; Zhang, Y.; Guo, Z. Polydimethylsiloxane-titania Nanocomposite Coating: Fabrication and Corrosion Resistance. Polymer 2018, 138, 203–210. DOI:10.1016/j.polymer.2018.01.063.
  • He, Y.; Yang, S.; Liu, H.; Shao, Q.; Chen, Q.; Lu, C.; Jiang, Y.; Liu, C.; Guo, Z. Reinforced Carbon Fiber Laminates with Oriented Carbon Nanotube Epoxy Nanocomposites: Magnetic Field Assisted Alignment and Cryogenic Temperature Mechanical Properties. J. Colloid Interface Sci. 2018, 517, 40–51. DOI:10.1016/j.jcis.2018.01.087.
  • Wu, Z.; Gao, S.; Chen, L.; Jiang, D.; Shao, Q.; Zhang, B.; Zhai, Z.; Wang, C.; Zhao, M.; Ma, Y.; et al. Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic Core–Shell SiO2@MWCNTs and Montmorillonite Bifillers. Macromol. Chem. Phys. 2017, 218, 1700357. DOI:10.1002/macp.201700357.
  • Wu, Z.; Cui, H.; Chen, L.; Jiang, D.; Weng, L.; Ma, Y.; Li, X.; Zhang, X.; Liu, H.; Wang, N.; et al. Interfacially Reinforced Unsaturated Polyester Carbon Fiber Composites with a Vinyl Ester-carbon Nanotubes Sizing Agent. Compos. Sci. Technol. 2018, 164, 195–203. DOI:10.1016/j.compscitech.2018.05.051.
  • Song, B.; Wang, T.; Sun, H.; Liu, H.; Mai, X.; Wang, X.; Wang, L.; Wang, N.; Huang, Y.; Guo, Z. Graphitic Carbon Nitride (g-C3N4) Interfacially Strengthened Carbon Fiber Epoxy Composites. Compos. Sci. Technol. 2018, 167, 515–521. DOI:10.1016/j.compscitech.2018.08.031.
  • Zhao, M.; Meng, L.; Ma, L.; Ma, L.; Yang, X.; Huang, Y.; Ryu, J. E.; Shankar, A.; Li, T.; Yan, C.; et al. Layer-by-layer Grafting CNTs onto Carbon Fibers Surface for Enhancing the Interfacial Properties of Epoxy Resin Composites. Compos. Sci. Technol. 2018, 154, 28–36. DOI:10.1016/j.compscitech.2017.11.002.
  • Gu, J.; Dong, W.; Tang, Y.; Guo, Y.; Tang, L.; Kong, J.; Tadakamalla, S.; Wang, B.; Guo, Z. Ultralow Dielectric, fluoride-containing Cyanate Ester Resins with Improved Mechanical Properties and High Thermal and Dimensional Stabilities. J. Mater. Chem. C 2017, 5, 6929–6936. DOI:10.1039/C7TC00222J.
  • Maji, P.; Choudhary, R. B.; Majhi, M. Structural, electrical and Optical Properties of Silane-modified ZnO Reinforced PMMA Matrix and Its Catalytic Activities. J. Non-Cryst. Solids 2017, 456, 40–48. DOI:10.1016/j.jnoncrysol.2016.10.039.
  • Di Mauro, A.; Cantarella, M.; Nicotra, G.; Pellegrino, G.; Gulino, A.; Brundo, M. V.; Privitera, V.; Impellizzeri, G. Novel Synthesis of ZnO/PMMA Nanocomposites for Photocatalytic Applications. Sci. Rep. 2017, 7, 40895. DOI:10.1038/srep40895.
  • Kitture, R.; Pawar, D.; Rao, C. N.; Choubey, R. K.; Kale, S. N. Nanocomposite Modified Optical Fiber: A Room Temperature, selective H2S Gas Sensor: Studies Using ZnO-PMMA. J. Alloys Compd. 2017, 695, 2091–2096. DOI:10.1016/j.jallcom.2016.11.048.
  • Balen, R.; da Costa, W. V.; de Lara Andrade, J.; Piai, J. F.; Muniz, E. C.; Companhoni, M. V.; Nakamura, T. U.; Lima, S. M.; da Cunha Andrade, L. H.; Bittencourt, P. R. S.; et al. Structural, thermal, optical Properties and Cytotoxicity of PMMA/ZnO Fibers and Films: Potential Application in Tissue Engineering. Appl. Surf. Sci. 2016, 385, 257–267. DOI:10.1016/j.apsusc.2016.05.122.
  • Salahuddin, N.; El-Kemary, M.; Ibrahim, E. Reinforcement of Polymethyl Methacrylate Denture Base Resin with ZnO Nanostructures. Int. J. Appl. Ceram. Technol. 2018, 15, 448–459. no DOI:10.1111/ijac.12802.
  • Cierech, M.; Wojnarowicz, J.; Szmigiel, D.; Bączkowski, B.; Grudniak, A. M.; Wolska, K. I.; Łojkowski, W.; Mierzwińska-Nastalska, E. Preparation and Characterization of ZnO-PMMA Resin Nanocomposites for Denture Bases. Acta Bioeng. Biomech. 2016, 18, 31–41. DOI:10.5277/abb-00232-2014-04.
  • Cierech, M.; Kolenda, A.; Grudniak, A. M.; Wojnarowicz, J.; Woźniak, B.; Gołaś, M.; Swoboda-Kopeć, E.; Łojkowski, W.; Mierzwińska-Nastalska, E. Significance of Polymethylmethacrylate (PMMA) Modification by Zinc Oxide Nanoparticles for Fungal Biofilm Formation. Int. J. Pharmaceut. 2016, 510, 323–335. DOI:10.1016/j.ijpharm.2016.06.052.
  • Popović, D.; Bobovnik, R.; Bolka, S.; Vukadinović, M.; Lazić, V.; Rudolf, R. Synthesis of PMMA/ZnO Nanoparticles Composite Used for Resin Teeth. Mater. Tehnol. 2017, 51, 871–878. DOI:10.17222/mit.2017.025.
  • Khan, M.; Chen, M.; Wei, C.; Tao, J.; Huang, N.; Qi, Z.; Li, L. Synthesis at the Nanoscale of ZnO into Poly(methyl Methacrylate) and Its Characterization. Appl. Phys. A Mater. Sci. Process. 2014, 117, 1085–1093. DOI:10.1007/s00339-014-8554-5.
  • Zhang, Y.; Zhuang, S.; Xu, X.; Hu, J. Transparent and UV-shielding ZnO@PMMA Nanocomposite Films. Opt. Mater. 2013, 36, 169–172. DOI:10.1016/j.optmat.2013.08.021.
  • Zhang, Y.; Wang, X.; Liu, Y.; Song, S.; Liu, D. Highly Transparent Bulk PMMA/ZnO Nanocomposites with Bright Visible Luminescence and Efficient UV-shielding Capability. J. Mater. Chem. 2012, 22, 11971. DOI:10.1039/c2jm30672g.
  • Kandulna, R.; Choudhary, R. B.; Maji, P. Ag-doped ZnO Reinforced Polymeric Ag:ZnO/PMMA Nanocomposites as Electron Transporting Layer for OLED Application. J. Inorg. Organomet. Polym. 2017, 27, 1760–1769. DOI:10.1007/s10904-017-0639-0.
  • Bhattacharjee, S.; Sarkar, P. K.; Roy, N.; Roy, A. Improvement of Reliability of Polymer Nanocomposite Based Transparent Memory Device by Oxygen Vacancy Rich ZnO Nanorods. Microelectron. Eng. 2016, 164, 53–58. DOI:10.1016/j.mee.2016.04.027.
  • Kahouli, M.; Barhoumi, A.; Bouzid, A.; Al-Hajry, A.; Guermazi, S. Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method. Superlattices Microstruct. 2015, 85, 7–23. DOI:10.1016/j.spmi.2015.05.007.
  • Sahai, A.; Goswami, N. Structural and Vibrational Properties of ZnO Nanoparticles Synthesized by the Chemical Precipitation Method. Physica E Low Dimens. Syst. Nanostruct. 2014, 58, 130–137. DOI:10.1016/j.physe.2013.12.009.
  • Chen, Y.-M.; Jia, H.-W. Environmentally Friendly Synthetic Route to the Monodispersed ZnO Nanoparticles on Large-Scale. Mater. Lett. 2014, 132, 389–392. DOI:10.1016/j.matlet.2014.06.118.
  • Nagajyothi, P. C.; Minh An, T. N.; Sreekanth, T. V. M.; Lee, J-i.; Joo Lee, D.; Lee, K. D. Green Route Biosynthesis: Characterization and Catalytic Activity of ZnO Nanoparticles. Mater. Lett. 2013, 108, 160–163. DOI:10.1016/j.matlet.2013.06.095.
  • Poddar, M. K.; Sharma, S.; Moholkar, V. S. Investigations in Two-step Ultrasonic Synthesis of PMMA/ZnO Nanocomposites by in–situ Emulsion Polymerization. Polymer (United Kingdom) 2016, 99, 453–469. DOI:10.1016/j.polymer.2016.07.052.
  • Anžlovar, A.; Crnjak Orel, Z.; Žigon, M. Poly(methyl Methacrylate) composites Prepared by in Situ Polymerization Using Organophillic Nano-to-submicrometer Zinc Oxide Particles. Eur. Polym. J. 2010, 46, 1261–1224. DOI:10.1016/j.eurpolymj.2010.03.010.
  • Liu, P.; Su, Z. Preparation and Characterization of PMMA/ZnO Nanocomposites via inSitu Polymerization Method. J. Macromol. Sci. A 2006, 45, 131–138. DOI:10.1080/00222340500408085.
  • Demir, M. M.; Memesa, M.; Castignolles, P.; Wegner, G. PMMA/zinc Oxide Nanocomposites Prepared by in-situ Bulk Polymerization. Macromol. Rapid Commun. 2006, 27, 763–770. DOI:10.1002/marc.200500870.
  • Morselli, D.; Valentini, P.; Perotto, G.; Scarpellini, A.; Pompa, P. P.; Athanassiou, A.; Fragouli, D. Thermally-induced in Situ Growth of ZnO Nanoparticles in Polymeric Fibrous Membranes. Compos. Sci. Technol. 2017, 149, 11–19. DOI:10.1016/j.compscitech.2017.05.025.
  • Laachachi, A.; Ruch, D.; Addiego, F.; Ferriol, M.; Cochez, M.; Lopez Cuesta, J. M. Effect of ZnO and Organo-modified Montmorillonite on Thermal Degradation of Poly(Methyl Methacrylate) Nanocomposites. Polym. Degrad. Stab. 2009, 94, 670–678. DOI:10.1016/j.polymdegradstab.2008.12.022.
  • Du, H.; An, Y.; Zhang, X.; Wei, Y.; Hou, L.; Liu, B.; Liu, H.; Zhang, J.; Wang, N.; Umar, A.; et al. Hydroxyapatite (HA) Modified Nanocoating Enhancement on AZ31 Mg Alloy by Combined Surface Mechanical Attrition Treatment and Electrochemical Deposition Approach. J. Nanosci. Nanotechnol. 2019, 19, 810–818. DOI:10.1166/jnn.2019.15746.
  • Guo, Y.; Xu, G.; Yang, X.; Ruan, K.; Ma, T.; Zhang, Q.; Gu, J.; Wu, Y.; Liu, H.; Guo, Z. Significantly Enhanced and Precisely Modeled Thermal Conductivity in Polyimide Nanocomposites with Chemically Modified Graphene via in Situ Polymerization and Electrospinning-hot Press Technology. J. Mater. Chem. C 2018, 6, 3004–3015. DOI:10.1039/C8TC00452H.
  • Zhang, Y.; Zhao, M.; Zhang, J.; Shao, Q.; Li, J.; Li, H.; Lin, B.; Yu, M.; Chen, S.; Guo, Z. Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Silane Functionalized Silicon Nitride. J. Polym Res. 2018, 25, 130. DOI:10.1007/s10965-018-1518-2.
  • Wang, X.; Liu, X.; Yuan, H.; Liu, H.; Liu, C.; Li, T.; Yan, C.; Yan, X.; Shen, C.; Guo, Z. Non-covalently Functionalized Graphene Strengthened Poly(vinyl Alcohol). Mater. Design 2018, 139, 372–379. DOI:10.1016/j.matdes.2017.11.023.
  • Yadav, A.; Prasad, V.; Kathe, A. A.; Raj, S.; Yadav, D.; Sundaramoorthy, C.; Vigneshwaran, N. Functional Finishing in Cotton Fabrics Using Zinc Oxide Nanoparticles. Bull. Mater. Sci. 2006, 29, 641–645. DOI:10.1007/s12034-006-0017-y.
  • Dazzi, A.; Deniset-Besseau, A.; Lasch, P. Minimising Contributions from Scattering in Infrared Spectra by Means of an Integrating Sphere. Analyst 2013, 138, 4191. DOI:10.1039/c3an00381g.
  • Agrawal, M.; Gupta, S.; Zafeiropoulos, N. E.; Oertel, U.; Häßler, R.; Stamm, M. Nano-level Mixing of ZnO into Poly(Methyl Methacrylate). Macromol. Chem. Phys. 2010, 211, 1925–1932. DOI:10.1002/macp.201000191.
  • Japić, D.; Marinšek, M.; Crnjak Orel, Z. Effect of ZnO on the Thermal Degradation Behavior of Poly(Methyl Methacrylate) Nanocomposites. ACSI. 2016, 63, 535–543. DOI:10.17344/acsi.2016.2324.
  • Khairy, M.; Amin, N. H.; Kamal, R. Optical and Kinetics of Thermal Decomposition of PMMA/ZnO Nanocomposites. J. Therm. Anal. Calorim. 2017, 128, 1811–1824. DOI:10.1007/s10973-016-6062-x.
  • Hammani, S.; Barhoum, A.; Bechelany, M. Fabrication of PMMA/ZnO Nanocomposite: Effect of High Nanoparticles Loading on the Optical and Thermal Properties. J. Mater. Sci. 2018, 53, 1911–1921. DOI:10.1007/s10853-017-1654-9.
  • Fateh, T.; Richard, F.; Rogaume, T.; Joseph, P. Experimental and Modelling Studies on the Kinetics and Mechanisms of Thermal Degradation of Polymethyl Methacrylate in Nitrogen and Air. J. Anal. Appl. Pyrolysis. 2016, 120, 423–433. DOI:10.1016/j.jaap.2016.06.014.
  • Viratyaporn, W.; Lehman, R. L. Effect of Nanoparticles on the Thermal Stability of PMMA Nanocomposites Prepared by in Situ Bulk Polymerization. J. Therm. Anal. Calorim. 2011, 103, 267–273. DOI:10.1007/s10973-010-1051-y.
  • Ferriol, M.; Gentilhomme, A.; Cochez, M.; Oget, N.; Mieloszynski, J. L. Thermal Degradation of Poly(methylmethacrylate) (PMMA): Modelling of DTG and TG Curves. Polym. Degrad. Stab. 2003, 79, 271–281. DOI:10.1016/S0141-3910(02)00291-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.