445
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effects of crosslink density on the behavior of VHB 4910 dielectric elastomer

, &
Pages 821-829 | Received 08 Jul 2018, Accepted 15 Apr 2019, Published online: 06 May 2019

References

  • Shankar, R.; Ghosh, T. K.; Spontak, R. J. Elastomers as Next-Generation Polymeric Actuators. Soft Matter. 2007, 3, 1116–1129. DOI:10.1039/b705737g.
  • Liu, L.; Huang, Y.; Zhang, Y.; Allahyarov, E.; Zhang, Z.; Lv, F.; Zhu, L. Understanding Reversible Maxwellian Electroactuation in a 3M VHB Dielectric Elastomer with Prestrain. Polymer (Guildf). 2018, 144, 150–158. DOI:10.1016/j.polymer.2018.04.048.
  • Pelrine, R.; Kornbluh, R.; Pei, Q.; Stanford, S.; Oh, S.; Eckerle, J.; Full, R.; Rosenthal, M.; Meijer, K. Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion. In Electroactive Polymer Actuators and Devices (EAPAD), SPIE 2002, 4695, pp. 126–137.
  • Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-Speed Electrically Actuated Elastomers with Strain Greater than 100%. Science. 2000, 287, 836–840. DOI:10.1126/science.287.5454.836.
  • Jiang, H.; Li, Z. Rate Dependent Stress-Stretch Relation of Dielectric Elastomers Subjected to Pure Shear like Loading and Electric Field. Acta Mech. Solida Sin. 2012, 25, 1–8. DOI:10.1016/S0894-9166(12)60048-2.
  • Sahu, R. K.; Patra, K. Rate-Dependent Mechanical Behavior of VHB 4910 Elastomer. Mech. Adv. Mater. Struct. 2016, 23, 170–179. DOI:10.1080/15376494.2014.949923.
  • Biddiss, E.; Chau, T. Dielectric Elastomers as Actuators for Upper Limb Prosthetics: Challenges and Opportunities. Med. Eng. Phys. 2008, 30, 403–418. DOI:10.1016/j.medengphy.2007.05.011.
  • Sahu, R. K.; Patra, K.; Szpunar, J. Experimental Study and Numerical Modelling of Creep and Stress Relaxation of Dielectric Elastomers. Strain. 2015, 51, 43–54. DOI:10.1111/str.12117.
  • Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P.; Ave, R.; Park, M. Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation. Sens. Actuators A. 1998, 64, 77–85. DOI:10.1016/S0924-4247(97)01657-9.
  • Hossain, M.; Steinmann, P. Modelling Electro-Active Polymers with a Dispersion-Type Anisotropy. Smart Mater. Struct. 2018, 27, 1–19. DOI:10.1088/1361-665X/aa9f88.
  • Kumar, A.; Ahmad, D.; Patra, K. Dependence of Actuation Strain of Dielectric Elastomer on Equi-Biaxial, Pure Shear and Uniaxial Modes of Pre-Stretching. IOP Conf. Ser: Mater. Sci. Eng. 2018, 310, 1–9. DOI:10.1088/1757-899X/310/1/012104.
  • Shankar, R.; Ghosh, T. K.; Spontak, R. J. Electromechanical Response of Nanostructured Polymer Systems with No Mechanical Pre-Strain. Macromol. Rapid Commun. 2007, 28, 1142–1147. doi: 10.1002/marc.200700033.
  • Zhao, Y.; Zha, J.; Yin, L.; Gao, Z.; Wen, Y.; Dang, Z. Remarkable Electrically Actuation Performance in Advanced Acrylic-Based Dielectric Elastomers without Pre-Strain at Very Low Driving Electric Field. Polymer (Guildf). 2018, 137, 269–275. DOI:10.1016/j.polymer.2017.12.065.
  • Tugui, C.; Bele, A.; Tiron, V.; Hamciuc, E.; Varganici, C. D.; Cazacu, M. Dielectric Elastomers with Dual Piezo-Electrostatic Response Optimized through Chemical Design for Electromechanical Transducers. J. Mater. Chem. C. 2017, 5, 824–834. DOI:10.1039/C6TC05193F.
  • Abdel-Raheem, N. A.; Halim, S. F.; Al-Khoribi, A. H. The Effect of Different Curing Conditions on Hardness, Thickness, and Residual Stress of Carbon Fiber Reinforced Epoxy Composites. J. Compos. Mater. 2017, 52(14), 1959–1970. DOI:10.1177/0021998317735683.
  • Töpper, T.; Weiss, F.; Osmani, B.; Bippes, C.; Leung, V.; Müller, B. Siloxane-Based Thin Films for Biomimetic Low-Voltage Dielectric Actuators. Sens. Actuators A. 2015, 233, 32–41. DOI:10.1016/j.sna.2015.06.014.
  • Yang, D.; Tian, M.; Kang, H.; Dong, Y.; Liu, H.; Yu, Y.; Zhang, L. New Polyester Dielectric Elastomer with Large Actuated Strain at Low Electric Field. Mater. Lett. 2012, 76, 229–232. DOI:10.1016/j.matlet.2012.02.084.
  • Niu, X.; Stoyanov, H.; Hu, W.; Leo, R.; Brochu, P.; Pei, Q. Synthesizing a New Dielectric Elastomer Exhibiting Large Actuation Strain and Suppressed Electromechanical Instability without Prestretching. J. Polym. Sci. B Polym. Phys. 2013, 51, 197–206. DOI:10.1002/polb.23197.
  • Zhang, Q. P.; Liu, J. H.; Liu, H. D.; Jia, F.; Zhou, Y. L.; Zheng, J. Tailoring Chain Length and Crosslink Density in Dielectric Elastomer toward Enhanced Actuation Strain. Appl. Phys. Lett. 2017, 111, 1–4. DOI:10.1063/1.5001666.
  • Yang, D.; Zhang, L.; Liu, H.; Dong, Y.; Yu, Y.; Tian, M. Lead Magnesium Niobate-Filled Silicone Dielectric Elastomer with Large Actuated Strain. J. Appl. Polym. Sci. 2012, 125, 2196–2201. DOI:10.1002/app.36428.
  • Ha, S. M.; Park, I. S.; Wissler, M.; Pelrine, R.; Stanford, S.; Kim, K. J.; Kovacs, G.; Pei, Q. High Electromechanical Performance of Electroelastomers Based on Interpenetrating Polymer Networks. In Electroactive Polymer Actuators and Devices (EAPAD), SPIE, 2008, p. 69272C. DOI:10.1117/12.778282.
  • Ha, S. M.; Yuan, W.; Pei, Q.; Pelrine, R.; Stanford, S. Interpenetrating Networks of Elastomers Exhibiting 300% Electrically-Induced Area Strain. Smart Mater. Struct. 2007, 16, S280–S287. DOI:10.1088/0964-1726/16/2/S12.
  • Sahu, R. K.; Yadu, S.; Singh, V.; Raja, S.; Patra, K. The Effect of Micro Molecular Parameters on the Actuation Performance of Electro Active Polymers. In International Mechanical Engineering Congress and Exposition, ASME 2017, pp. 71272. 1–6. DOI:10.1115/IMECE2017-71272.
  • Park, Y. J.; Lim, D. H.; Kim, H. J.; Park, D. S.; Sung, I. K. UV- and Thermal-Curing Behaviors of Dual-Curable Adhesives Based on Epoxy Acrylate Oligomers. Int. J. Adhes. Adhes. 2009, 29, 710–717. DOI:10.1016/j.ijadhadh.2009.02.001.
  • Larché, J. F.; Bussière, P. O.; Wong-Wah-Chung, P.; Gardette, J. L. Chemical Structure Evolution of Acrylic-Melamine Thermoset upon Photo-Ageing. Eur. Polym. J. 2012, 48, 172–182. DOI:10.1016/j.eurpolymj.2011.10.018.
  • Fan, F.; Szpunar, J. Characterization of Viscoelasticity and Self-Healing Ability of VHB 4910. Macromol. Mater. Eng. 2015, 300, 99–106. DOI:10.1002/mame.201400122.
  • Bandzierz, K.; Reuvekamp, L.; Dryzek, J.; Dierkes, W.; Blume, A.; Bielinski, D. Influence of Network Structure on Glass Transition Temperature of Elastomers. Materials (Basel). 2016, 9, 1–17. DOI:10.3390/ma9070607.
  • Sahu, R. K.; Patra, K. Characterisation of Tensile Behaviour of a Dielectric Elastomer at Large Deformation. J. Inst. Eng. India. Ser. C. 2014, 95, 207–212. DOI:10.1007/s40032-014-0119-z.
  • Orwoll, R.; Arnold, P. Polymer—Solvent Interaction Parameter X. In Physical Properties of Polymer Handbook; J. E. Mark, Ed.; Springer: New York, 1996, p. 451. DOI:10.1007/978-0-387-69002-5_14.
  • Sheng, J.; Chen, H.; Qiang, J.; Li, B.; Wang, Y. Thermal, Mechanical, and Dielectric Properties of a Dielectric Elastomer for Actuator Applications. J. Macromol. Sci. Part B. 2012, 51, 2093–2104. DOI:10.1080/00222348.2012.659617.
  • Vining, K. H.; Scherba, J. C.; Bever, A. M.; Alexander, M. R.; Celiz, A. D.; Mooney, D. J. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells. Adv. Mater. 2018, 30, 1–9. DOI:10.1002/adma.201704486.
  • Martín-Ramos, P.; Fernández-Coppel, I. A.; Ruíz-Potosme, N. M.; Martín-Gil, J.; Martín-Ramos, P.; Fernández, I. A.; Miguel, N. Potential of ATR-FTIR Spectroscopy for the Classification of Natural Resins. BEMS Rep. 2018, 4, 3–6.
  • Isikver, Y.; Baylav, S. Synthesis and Characterization of Metal Ion-Imprinted Polymers. Bull. Mater. Sci. 2018, 41, 1–11.
  • Gu, X.; Sun, H.; Kong, X.; Fu, C.; Yu, H.; Li, J.; Wang, J. A Green Protocol to Prepare Monodisperse Poly (TMPTMA – Styrene) Microspheres by Photoinitiated Precipitation Polymerization in Low-Toxicity Solvent. Colloid Polym. Sci. 2013, 291, 1771–1779. DOI:10.1007/s00396-013-2912-2.
  • Opris, D. M. Polar Elastomers as Novel Materials for Electromechanical Actuator Applications. Adv. Mater. 2018, 30, 1–23. DOI:10.1002/adma.201703678.
  • Madsen, F. B.; Yu, L.; Daugaard, A. E.; Hvilsted, S.; Skov, A. L. Silicone Elastomers with High Dielectric Permittivity and High Dielectric Breakdown Strength Based on Dipolar Copolymers. Polymer (United Kingdom) 2014, 55, 6212–6219. DOI:10.1016/j.polymer.2014.09.056.
  • Turasan, H.; Barber, E. A.; Malm, M.; Kokini, J. L. Mechanical and Spectroscopic Characterization of Crosslinked Zein Films Cast from Solutions of Acetic Acid Leading to a New Mechanism for the Crosslinking of Oleic Acid Plasticized Zein Films. Food Res. Int 2018, 108, 357–367. DOI:10.1016/j.foodres.2018.03.063.
  • Hossain, M.; Vu, D. K.; Steinmann, P.; Science, C. M.; Hossain, M.; Vu, D. K.; Steinmann, P. Experimental Study and Numerical Modelling of VHB 4910 Polymer. Comput. Mater. Sci. 2012, 59, 65–74. DOI:10.1016/j.commatsci.2012.02.027.
  • Wang, S.; Chester, S. A. Experimental Characterization and Continuum Modeling of Inelasticity in Filled Rubber-like Materials. Int. J. Solids Struct 2018, 136–137, 125–136. DOI:10.1016/j.ijsolstr.2017.12.010.
  • Joshi, G.; Pawde, S. M. Effect of Molecular Weight on Dielectric Properties of Polyvinyl Alcohol Films. J. Appl. Polym. Sci. 2006, 102, 1014–1016. DOI:10.1002/app.24062.
  • Chua, J.; Tu, Q. A Molecular Dynamics Study of Crosslinked Phthalonitrile Polymers: The Effect of Crosslink Density on Thermomechanical and Dielectric Properties. Polymers. 2018, 4, 1–11. DOI:10.3390/polym10010064.
  • Huang, Q.; Lu, H.; Deng, B.; Li, L. Effect of Hard Segments on the Thermal and Mechanical Behaviour of a Novel Hybrid Silicon Thermoplastic Elastomer. Mater. Res. Express 2017, 4, 1–10. DOI:10.1088/2053-1591/aa764d.
  • Al-Harbi, F. A.; Ayad, N. M.; Saber, M. A.; Arrejaie, A. S.; Morgano, S. M. Mechanical Behavior and Color Change of Facial Prosthetic Elastomers after Outdoor Weathering in a Hot and Humid Climate. J. Prosthet. Dent. 2015, 113, 146–151. DOI:10.1016/j.prosdent.2014.09.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.