700
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

One-pot synthesis and characterization of crosslinked polyphosphazene dopamine microspheres for controlled drug delivery applications

&
Pages 854-859 | Received 06 Jul 2018, Accepted 01 May 2019, Published online: 21 May 2019

References

  • Allcock, H. R. Polyphosphazene Elastomers, Gels, and Other Soft Materials. Soft Mater. 2012, 8, 7521–7532. DOI:10.1039/c2sm26011e.
  • Poscher, V.; Teasdale, I.; Salinas, Y. Surfactant-Free Synthesis of Cyclomatrix and Linear Organosilica Phosphazene-Based Hybrid Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 655–660. DOI:10.1021/acsanm.8b02247.
  • Kumbar, S. G.; Bhattacharyya, S.; Nukavarapu, S. P.; Khan, Y. M.; Nair, L. S.; Laurencin, C. T. In Vitro and in Vivo Characterization of Biodegradable Poly(Organophosphazenes) for Biomedical Applications. J. Inorg. Organomet. Polym. Mater. 2007, 16, 365–385. DOI:10.1007/s10904-006-9071-6.
  • Huang, Z.; Chen, S.; Lu, X.; Lu, Q. Water-Triggered Self-Assembly Polycondensation for the One-Pot Synthesis of Cyclomatrix Polyphosphazene Nanoparticles from Amino Acid Ester. Chem. Commun. 2015, 51, 8373–8376. DOI:10.1039/C5CC00735F.
  • Wang, D.; Hu, Y.; Meng, L.; Wang, X.; Lu, Q. One-Pot Synthesis of Fluorescent and Cross-Linked Polyphosphazene Nanoparticles for Highly Sensitive and Selective Detection of Dopamine in Body Fluids. RSC Adv. 2015, 5, 92762–92768. DOI:10.1039/C5RA20462C.
  • Hu, Y.; Meng, L.; Lu, Q. Fastening” Porphyrin in Highly Cross-Linked Polyphosphazene Hybrid Nanoparticles: Powerful Red Fluorescent Probe for Detecting Mercury Ion. Langmuir 2014, 30, 4458–4464. DOI:10.1021/la500270t.
  • Köhler, J.; Kühl, S.; Keul, H.; Möller, M.; Pich, A. Synthesis and Characterization of Polyamine-Based Cyclophosphazene Hybrid Microspheres. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 527–536. DOI:10.1002/pola.27028.
  • Gall, T. M.; Knittel, D.; Gutmann, J. S.; Opwis, K. Permanent Flame Retardant Finishing of Textiles by Allyl-Functionalized Polyphosphazenes. ACS Appl. Mater. Interfaces 2015, 7, 9349–9363. DOI:10.1021/acsami.5b02141.
  • Mu, X.; Yuan, B.; Hu, W.; Qiu, S.; Song, L.; Hu, Y. Flame Retardant and anti-Dripping Properties of Polylactic Acid/Poly(Bis(Phenoxy)Phosphazene)/Expandable Graphite Composite and Its Flame Retardant Mechanism. RSC Adv. 2015, 5, 76068–76078. DOI:10.1039/C5RA12701G.
  • Allcock, H. R. Recent Developments in Polyphosphazene Materials Science. Curr. Opin. Solid State Mater. Sci. 2006, 10, 231–240. DOI:10.1016/j.cossms.2007.06.001.
  • Wang, X.; Fu, J.; Chen, Z.; Li, Q.; Wu, X.; Xu, Q. Hollow Polyphosphazene Microspheres with Crosslinked Chemical Structure: Synthesis, Formation Mechanism and Applications. RSC Adv. 2015, 5, 33720–33728. DOI:10.1039/C5RA00560D.
  • Wang, M.; Fu, J.; Chen, Z.; Wang, X.; Xu, Q. In Situ Growth of Gold Nanoparticles onto Polyphosphazene Microspheres with Amino-Groups for Alcohol Oxidation in Aqueous Solutions. Mater. Lett. 2015, 143, 201–204. DOI:10.1016/j.matlet.2014.12.114.
  • Wei, W.; Lu, R.; Xie, H.; Zhang, Y.; Bai, X.; Gu, L.; Da, R.; Liu, X. Selective Adsorption and Separation of Dyes from an Aqueous Solution on Organic–Inorganic Hybrid Cyclomatrix Polyphosphazene Submicro-Spheres. J. Mater. Chem. A. 2015, 3, 4314–4322. DOI:10.1039/C4TA06444E.
  • Fu, J.; Chen, Z.; Wu, X.; Wang, M.; Wang, X.; Zhang, J.; Zhang, J.; Xu, Q. Hollow Poly (Cyclotriphosphazene-Co-Phloroglucinol) Microspheres: An Effective and Selective Adsorbent for the Removal of Cationic Dyes from Aqueous Solution. Chem. Eng. J. 2015, 281, 42–52. DOI:10.1016/j.cej.2015.06.088.
  • Nukavarapu, S. P.; Kumbar, S. G.; Brown, J. L.; Krogman, N. R.; Weikel, A. L.; Hindenlang, M. D.; Nair, L. S.; Allcock, H. R.; Laurencin, C. T. Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering. Biomacromolecules 2008, 9, 1818–1825. DOI:10.1021/bm800031t.
  • Brown, J. L.; Nair, L. S.; Laurencin, C. T. Solvent/Non-Solvent Sintering: A Novel Route to Create Porous Microsphere Scaffolds for Tissue Regeneration. J. Biomed. Mater. Res. B. 2007, 86, 396–406. DOI:10.1002/jbm.b.31033.
  • Chang, F.; Huang, X.; Wei, H.; Chen, K.; Shan, C.; Tang, X. Intrinsically Fluorescent Hollow Spheres Based on Organic–Inorganic Hybrid Polyphosphazene Material: Synthesis and Application in Drug Release. Mater. Lett. 2014, 125, 128–131. DOI:10.1016/j.matlet.2014.03.137.
  • Sun, L.; Liu, T.; Li, H.; Yang, L.; Meng, L.; Lu, Q.; Long, J. Fluorescent and Cross-Linked Organic-Inorganic Hybrid Nanoshells for Monitoring Drug Delivery. ACS Appl. Mater. Interfaces 2015, 7, 4990–4997. DOI:10.1021/acsami.5b00175.
  • Ozay, H.; Ozay, O. Synthesis and Characterization of Drug Microspheres Containing Phosphazene for Biomedical Applications. Colloids. Surf. A. Physicochem. Eng. Asp. 2014, 450, 99–105. DOI:10.1016/j.colsurfa.2014.03.022.
  • Deng, M.; Kumbar, S. G.; Wan, Y.; Toti, U. S.; Allcock, H. R.; Laurencin, C. T. Polyphosphazene Polymers for Tissue Engineering: An Analysis of Material Synthesis, Characterization and Applications. Soft. Matter. 2010, 6, 3119–3132. DOI:10.1039/b926402g.
  • Zhang, J. X.; Qiu, L. Y.; Wu, X. L.; Jin, Y.; Zhu, K. J. Temperature-Triggered Nanosphere Formation through Self-Assembly of Amphiphilic Polyphosphazene. Macromol. Chem. Phys. 2006, 207, 1289–1296. DOI:10.1002/macp.200600139.
  • Veronese, F. M.; Marsilio, F.; Caliceti, P.; De Filippis, P.; Giunchedi, P.; Lora, S. Polyorganophosphazene Microspheres for Drug Release: Polymer Synthesis, Microsphere Preparation, in Vitro and in Vivo Naproxen Release. J. Controlled. Release 1998, 52, 227–237. DOI:10.1016/S0168-3659(97)00098-9.
  • Gudasi, K. B.; Vadavi, R. S.; Sreedhar, B.; Sairam, M.; Shelke, N. B.; Mallikarjuna, N. N.; Kulkarni, P. V.; Aminahbavi, T. M. Synthesis and Characterization of Some Organopolyphosphazenes and Their Controlled-Release Characteristics. Des. Monomers. Polym. 2007, 10, 235–251. DOI:10.1163/156855507780949227.
  • Zhang, P.; Huang, X.; Fu, J.; Huang, Y.; Zhu, Y.; Tang, X. A One-Pot Approach to Novel Cross-Linked Polyphosphazene Microspheres with Active Amino Groups. Macromol. Chem. Phys. 2009, 210, 792–798. DOI:10.1002/macp.200800597.
  • Wang, Y.; Mu, J.; Li, L.; Shi, L.; Zhang, W.; Jiang, Z. Preparation and Properties of Novel Fluorinated Cross-Linked Polyphosphazene Micro-Nano Spheres. High. Perform. Polym. 2012, 24, 229–236. DOI:10.1177/0954008311436221.
  • Wang, H. Y.; Sun, Y.; Tang, B. Study on Fluorescence Property of Dopamine and Determination of Dopamine by Fluorimetry. Talanta 2002, 57, 899–907. DOI:10.1016/S0039-9140(02)00123-6.
  • Kurzatkowska, K.; Dolusic, E.; Dehaen, W.; Stołtny, K. S.; Sieron, A.; Radecka, H. Gold Electrode Incorporating Corrole as an Ion-Channel Mimetic Sensor for Determination of Dopamine. Anal. Chem. 2009, 81, 7397–7405. DOI:10.1021/ac901213h.
  • Diéguez, N. G.; Colina, A.; Palacios, J. L.; Heras, A. Spectroelectrochemistry at Screen-Printed Electrodes: Determination of Dopamine. Anal. Chem. 2012, 84, 9146–9153. DOI:10.1021/ac3018444.
  • Park, S. J.; Lee, S. H.; Yang, H.; Park, C. S.; Lee, C. S.; Kwon, O. S.; Park, T. H.; Jang, J. Human Dopamine Receptor-Conjugated Multidimensional Conducting Polymer Nanofiber Membrane for Dopamine Detection. ACS Appl. Mater. Interfaces 2016, 8, 28897–28903. DOI:10.1021/acsami.6b10437.
  • Zhou, X.; Wang, A.; Yu, C.; Wu, S.; Shen, J. Facile Synthesis of Molecularly Imprinted Graphene Quantum Dots for the Determination of Dopamine with Affinity-Adjustable. ACS Appl. Mater. Interfaces 2015, 7, 11741–11747. DOI:10.1021/am5078478.
  • Wan, C.; Huang, X. Cyclomatrix Polyphosphazenes Frameworks (Cyclo-POPs) and the Related Nanomaterials: Synthesis, Assembly and Functionalisation. Mater. Today. Commun. 2017, 11, 38–60. DOI:10.1016/j.mtcomm.2017.02.001.
  • Eldaroti, H. H.; Gadir, S. A.; Refat, M. S.; Adam, A. M. A. Charge Transfer Complexes of the Donor Acriflavine and the Acceptors Quinol, Picric Acid, TCNQ and DDQ: Synthesis, Spectroscopic Characterizations and Antimicrobial Studies. Int. J. Electrochem. Sci. 2013, 8, 5774–5800.
  • Lee, C. J.; Yue, C. H.; Lin, Y. J.; Lin, Y. Y.; Kao, S. H.; Liu, J. Y.; Chen, Y. H. Antitumor Activity of Acriflavine in Lung Adenocarcinoma Cell Line A549. Anticancer Res. 2014, 34, 6467–6472.
  • Lee, C. J.; Yue, C. H.; Lin, Y. Y.; Wu, J. C.; Liu, J. Y. Antitumor Activity of Acriflavine in Human Hepatocellular Carcinoma Cells. Anticancer. Res. 2014, 34, 3549–3556.
  • Gavini, E.; Sanna, V.; Juliano, C.; Bonferoni, M. C.; Giunchedi, P. Mucoadhesive Vaginal Tablets as Veterinary Delivery System for the Controlled Release of an Antimicrobial Drug, Akriflavine. AAPS Pharm. Sci. 2002, 3, 32–38. DOI:10.1007/BF02830618.
  • Can, H. K.; Karakus, G.; Tuzcu, N. Synthesis, Characterization and in Vitro Antibacterial Assessments of a Novel Modified Poly[Maleic Anhydride-Alt-Acrylic Acid]/Akriflavine Conjugate. Polym. Bull. 2014, 71, 2903–2921. DOI:10.1007/s00289-014-1230-2.
  • Sanghvi, P. G.; Devi, S. Synthesis of Nanoparticles by Microemulsion Polymerization and Their Application in a Drug Delivery System. Int. J. Polym. Mater. 2005, 54, 293–303. DOI:10.1080/00914030390257359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.