509
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

A Superacid-catalyzed Synthesis of Fluorescent Covalent Triazine Based Framework Containing Perylene Tetraanhydride Bisimide for Sensing to O-nitrophenol with Ultrahigh Sensitivity

, , , , &
Pages 1004-1011 | Received 13 Feb 2019, Accepted 01 Jul 2019, Published online: 15 Jul 2019

References

  • Zhang, D. P.; Wu, W. L.; Long, H. Y.; Liu, Y. C.; Yang, Z. S. Voltammetric Behavior of o-Nitrophenol and Damage to DNA. Int. J. Mol. Sci. 2008, 9, 316–326. DOI: 10.3390/ijns9030316.
  • Zhou, H. F.; Li, S. X.; Wu, Y. J.; Chen, D. J.; Li, Y. H.; Zheng, F. Y.; Yu, H. W. Nitrogen-Doped Carbon Spheres Surface Modified with in Situ Synthesized Au Nanoparticles as Electrochemical Selective Sensor for Simultaneous Detection of Trace Nitrophenol and Dihydroxybenzene Isomers. Sensor. Actuat. B-Chem. 2016, 237, 487–494. DOI: 10.1016/j.snb.2016.06.122.
  • Zaggout, F. R.; Ghalwa, N. A. Removal of o-Nitrophenol from Water by Electrochemical Degradation Using a Lead Oxide/Titanium Modified Electrode. J. Environ. Manage. 2008, 86, 291–296. DOI: 10.1016/j.jenvman.2006.12.033.
  • Yu, P. H.; Chang, Z. D.; Ma, Y. C.; Wang, S. J.; Cao, H. B.; Hua, C.; Liu, H. Z. Separation of p-Nitrophenol and o-Nitrophenol with Three-Liquid-Phase Extraction System. Sep. Purif. Technol. 2009, 70, 199–206. DOI: 10.1016/j.seppur.2009.09.016.
  • Luo, L. Q.; Zou, X. L.; Ding, Y. P.; Wu, Q. S. Derivative Voltammetric Direct Simultaneous Determination of Nitrophenol Isomers at a Carbon Nanotube Modified Electrode. Sensor. Actuat. B Chem. 2008, 135, 61–65. DOI: 10.1016/j.snb.2008.07.019.
  • Nistor, C.; Oubiña, A.; Marco, M. P.; Barceló, D.; Emnéus, J. Competitive Flow Immunoassay with Fluorescence Detection for Determination of 4-Nitrophenol. Anal. Chim. Acta 2001, 426, 185–195. DOI: 10.1016/S0003-2670(00)00825-4.
  • Wang, Y.; Wang, K. M.; Shen, G. L.; Yu, R. Q. A Selective Optical Chemical Sensor for o-Nitrophenol Based on Fluorescence Quenching of Curcumin. Talanta 1997, 44, 1319–1327. DOI: 10.1016/S0039-9140(97)00028-3.
  • Niazi, A.; Yazdanipour, A. Spectrophotometric Simultaneous Determination of Nitrophenol Isomers by Orthogonal Signal Correction and Partial Least Squares. J. Hazard. Mater. 2007, 146, 421–427. DOI: 10.1016/j.jhazmat.2007.03.063.
  • Guo, X.; Wang, Z.; Zhou, S. The Separation and Determination of Nitrophenol Isomers by High-Performance Capillary Zone Electrophoresis. Talanta 2004, 1, 135–139. DOI: 10.1016/j.talanta.2004.01.020.
  • Silva, P. S.; Gasparini, B. C.; Magosso, H. A.; Spinelli, A. Gold Nanoparticles Hosted in a Water-Soluble Silsesquioxane Polymer Applied as a Catalytic Material onto an Electrochemical Sensor for Detection of Nitrophenol Isomers. J. Hazard. Mater 2014, 273, 70–77. DOI: 10.1016/j.jhazmat.2014.03.032.
  • Kafiand, A. K. M.; Chen, A. A Novel Amperometric Biosensor for the Tetection of Nitrophenol. Talanta 2009, 1, 97–102. DOI: 10.1016/j.talanta.2009.03.015.
  • Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent Metal–Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43, 5815–5840. DOI: 10.1039/C4CS00010B.
  • Sang, N. N.; Zhan, C. X.; Cao, D. P. Highly Sensitive and Selective Detection of 2,4,6-Trinitrophenol Using Covalent-Organic Polymer Luminescent Probes. J. Mater. Chem. A 2015, 3, 92–96. DOI: 10.1039/C4TA04903A.
  • Guo, L.; Zeng, X. F.; Cao, D. P. Porous Covalent Organic Polymers as Luminescent Probes for Highly Selective Sensing of Fe3+ and Chloroform: Functional Group Effects. Sensor. Actuat. B Chem. 2016, 226, 273–278. DOI: 10.1016/j.snb.2015.11.108.
  • Niu, F.; Tao, L. M.; Deng, Y. H.; Gao, H.; Liu, J. G.; Song, W. G. A Covalent Triazine Framework as an Efficient Catalyst for Photodegradation of Methylene Blue under Visible Light Illumination. New J. Chem. 2014, 38, 5695–5699. DOI: 10.1039/C4NJ01534G.
  • Butchosa, C.; McDonald, T. O.; Cooper, A. I.; Adams, D. J.; Zwijnenburg, M. A. Shining a Light on s‐Triazine-Based Polymers. J. Phys. Chem. C 2014, 118, 4314–4324. DOI: 10.1021/jp411854f.
  • Wang, X. Y.; Zhang, C.; Zhao, Y.; Ren, S. J.; Jiang, J. X. Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine Based Frameworks. Macromol. Rapid Commun. 2016, 37, 323–329. DOI: 10.1002/marc.201500615.
  • Ren, S. J.; Dawson, R.; Laybourn, A.; Jiang, J. X.; Khimyak, Y.; Adams, D. J.; Cooper, A. I. Functional Conjugated Microporous Polymers: From 1,3,5-Benzene to 1,3,5-Triazine. Polym. Chem. 2012, 3, 928–934. DOI: 10.1039/c2py00585a.
  • Xiang, Z. H.; Cao, D. P. Luminescent Covalent–Organic Polymers for Detecting Nitroaromatic Explosives and Small Organic Molecules. Macromol. Rapid Commun. 2012, 33, 1184–1190. DOI: 10.1002/marc.201100865.
  • Zhang, Y. W.; Sigen, A.; Zou, Y. C.; Luo, X. L.; Li, Z. P.; Xia, H.; Liu, X. M.; Mu, Y. Gas Uptake, Molecular Sensing and Organocatalytic Performances of a Multifunctional Carbazole-Based Conjugated Microporous Polymer. J. Mater. Chem. A 2014, 2, 13422–13430. DOI: 10.1039/C4TA01871K.
  • Zhang, W.; Qiu, L. G.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Microwave-Assisted Synthesis of Highly Fluorescent Nanoparticles of a Melamine-Based Porous Covalent Organic Framework for Trace-Level Detection of Nitroaromatic Explosives. J. Hazard. Mater. 2012, 221–222, 147–154. DOI: 10.1016/j.jhazmat.2012.04.025.
  • Li, Y. K.; Bi, S. M.; Liu, F.; Wu, S. Y.; Hu, J.; Wang, L. M.; Liu, H. L.; Hu, Y. Porosity-Induced Emission: Exploring Color-Controllable Fluorescence of Porous Organic Polymers and Their Chemical Sensing Applications. J. Mater. Chem. C 2015, 3, 6876–6881. DOI: 10.1039/C5TC00682A.
  • Liao, Y. Z.; Weber, J.; Fau, C. F. J. Fluorescent Microporous Polyimides Based on Perylene and Triazine for Highly CO2‐Selective Carbon Materials. Macromolecules 2015, 48, 2064–2073. DOI: 10.1021/ma501662r.
  • Xiang, L.; Zhu, Y. L.; Gu, S.; Chen, D. Y.; Fu, X.; Zhang, Y. D.; Yu, G. P.; Pan, C. Y.; Hu, Y. H. A Luminescent Hypercrosslinked Conjugated Microporous Polymer for Efficient Removal and Detection of Mercury Ions. Macromol. Rapid Commun. 2015, 36, 1566–1571. DOI: 10.1002/marc.201500159.
  • Geng, T. M.; Zhu, Z. M.; Zhang, W. Y.; Wang, Y. A Nitrogen-Rich Fluorescent Conjugated Microporous Polymer with Triazine and Triphenylamine Units for High Iodine Capture and Nitro Aromatic Compound Detection. J. Mater. Chem. A 2017, 5, 7612–7617. DOI: 10.1039/C7TA00590C.
  • Liu, J.; Yee, K. K.; Lo, K. K. W.; Zhang, K. Y.; To, W. P.; Che, C. M.; Xu, Z. T. Selective Ag(I) Binding, H2S Sensing, and White-Light Emission from an Easy-to-Make Porous Conjugated Polymer. J. Am. Chem. Soc. 2014, 136, 2818–2824. DOI: 10.1021/ja411067a.
  • Tao, L. M.; Niu, F.; Zhang, D.; Wang, T. M.; Wang, Q. H. Amorphous Covalent Triazine Frameworks for High Performance Room Temperature Ammonia Gas Sensing. New J. Chem. 2014, 38, 2774–2777. DOI: 10.1039/c4nj00476k.
  • Zhu, X.; Tian, C. C.; Mahurin, S. M.; Chai, S. H.; Wang, C. M. L.; Brown, S.; Veith, G. M.; Luo, H. M.; Liu, H. L.; Dai, S. A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation. J. Am. Chem. Soc. 2012, 134, 10478–10484. DOI: 10.1021/ja304879c.
  • Rao, K. V.; Haldar, R.; Kulkarni, C.; Maji, T. K.; Georg, S. J. Perylene Based Porous Polyimides: Tunable, High Surface Area with Tetrahedral and Pyramidal Monomers. Chem. Mater. 2012, 24, 969–971. DOI: 10.1021/cm203599q.
  • Liebl, M. R.; Senker, J. Microporous Functionalized Triazine-Based Polyimides with High CO2 Capture Capacity. Chem. Mater. 2013, 25, 970–980. DOI: 10.1021/cm4000894.
  • Rao, K. V.; Haldar, R.; Maji, T. K.; George, S. J. Porous Polyimides from Polycyclic Aromatic Linkers: Selective CO2 Capture and Hydrogen Storage. Polymer 2014, 55, 1452–1458. DOI: 10.1016/j.polymer.2014.01.053.
  • Wu, S. F.; Gu, S.; Zhang, A. Q.; Yu, G. P.; Wang, Z. G.; Jian, J. G.; Pan, C. Y. A Rational Construction of Microporous Imidebridged Covalent–Organic Polytriazines for High-Enthalpy Small Gas Absorption. J. Mater. Chem. A 2015, 3, 878–885. DOI: 10.1039/C4TA04734F.
  • Kuecken, S.; Schmidt, J.; Zhi, L. J.; Thomas, A. Conversion of Amorphous Polymer Networks to Covalent Organic Frameworks under Ionothermal Conditions: A Facile Synthesis Route for Covalent Triazine Trameworks. J. Mater. Chem. A 2015, 3, 24422–24427. DOI: 10.1039/C5TA07408H.
  • Chan, C. Y. K.; Lam, J. W. Y.; Jim, C. K. W.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Polycyclotrimerization of Dinitriles: A New Polymerization Route for the Construction of Soluble Nitrogen-Rich Polytriazines with Hyperbranched Structures and Functional Properties. Macromolecules 2013, 46, 9494–9506. DOI: 10.1021/ma402066k.
  • Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Porous, Fluorescent, Covalent Triazine-Based Frameworks via Room-Temperature and Microwave-Assisted Synthesis. Adv. Mater. 2012, 24, 2357–2361. DOI: 10.1002/adma.201200751.
  • Gomes, R.; Bhanja, P.; Bhaumik, A. A Triazine-Based Covalent Organic Polymer for Efficient CO2 Adsorption. Chem. Commun. (Camb.) 2015, 51, 10050–10053. DOI: 10.1039/C5CC02147B.
  • Yu, H.; Shen, C. J.; Wang, Z. G. Micro- and Mesoporous Polycyanurate Networks Based on Triangular Units. ChemPlusChem 2013, 78, 498–505. DOI: 10.1002/cplu.201300090.
  • Zhu, X.; Chai, S.; Tian, C.; Fulvio, P. F.; Han, K. S.; Hagaman, E. W.; Veith, G. M.; Mahurin, S. M.; Brown, S.; Liu, H.; Dai, S. Synthesis of Porous, Nitrogen-Doped Adsorption/Diffusion Carbonaceous Membranes for Efficient CO2 Separation. Macromol. Rapid Commun. 2013, 34, 452–459. DOI: 10.1002/marc.201200793.
  • Ozdemir, E.; Thirion, D.; Yavuz, C. T. Covalent Organic Polymer Framework with C–C Bonds as a Fluorescent Probe for Selective Iron Detection. RSC Adv. 2015, 5, 69010–69015. DOI: 10.1039/C5RA10697D.
  • Ma, D. X.; Li, B. Y.; Cui, Z. H.; Liu, K.; Chen, C. L.; Li, G. H.; Hua, J.; Ma, B. H.; Shi, Z.; Feng, S. H. Multifunctional Luminescent Porous Organic Polymer for Selectively Detecting Iron Ions and 1,4-Dioxane via Luminescent Turn-off and Turn-on Sensing. ACS Appl. Mater. Interfaces 2016, 8, 24097–24103. DOI: 10.1021/acsami.6b07470.
  • Xu, Y. H.; Nagai, A.; Jiang, D. L. Core–Shell Conjugated Microporous Polymers: A New Strategy for Exploring Color-Tunable and–Controllable Light Emissions. Chem. Commun. 2013, 49, 1591–1593. DOI: 10.1039/C2CC38211C.
  • Wu, X. F.; Li, H. B.; Xu, Y. X.; Tong, H.; Wang, L. X. Intramolecular Charge-Transfer Emission from Conjugated Polymer Nanoparticles: The Terminal Group Effect on Electronic and Optical Properties. Polym. Chem. 2015, 6, 2305–2311. DOI: 10.1039/C5PY00006H.
  • Guo, L.; Cao, D. P. Color Tunable Porous Organic Polymer Luminescent Probes for Selective Sensing of Metal Ions and Nitroaromatic Explosives. J. Mater. Chem. C 2015, 3, 8490–8494. DOI: 10.1039/C5TC01649E.
  • Li, Z. P.; Li, H.; Xia, H.; Ding, X. S.; Luo, X. L.; Liu, X. M.; Mu, Y. Triarylboron-Linked Conjugated Microporous Polymers: Sensing and Removal of Fluoride Ions. Chem. Eur. J. 2015, 21, 17355–17362. DOI: 10.1002/chem.201502241.
  • Hayashi, S.; Togawa, Y.; Yamamoto, S. I.; Koizumi, T.; Nishi, K.; Asano, A. Synthesis of π-Conjugated Network Polymers Based on Fluoroarene and Fluorescent Units via Direct Arylation Polycondensation and Their Porosity and Fluorescent Properties. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3862–3867. DOI: 10.1002/pola.28770.
  • Rao, K. V.; Haldar, R.; Maji, T. K.; George, S. J. Dynamic, Conjugated Microporous Polymers: visible Light Harvesting via Guest-Responsive Reversible Swelling. Phys. Chem. Chem. Phys. 2016, 18, 156–163. DOI: 10.1039/C5CP05052A.
  • Zhang, P.; Guo, J.; Wang, C. C. Magnetic CMP Microspheres: Multifunctional Poly(Phenylene Ethynylene) Frameworks with Covalently Built-in Fe3O4 Nanocrystals Exhibiting Pronounced Sensitivity for Acetaminophen Microdetection. J. Mater. Chem. 2012, 22, 21426–21433. DOI: 10.1039/c2jm34725c.
  • Guo, L.; Cao, D. P.; Yun, J. M.; Zeng, X. F. Highly Selective Detection of Picric Acid from Multicomponent Mixtures of Nitro Explosives by Using COP Luminescent Probe. Sensor. Actuat. B Chem. 2017, 243, 753–760. DOI: 10.1016/j.snb.2016.12.060.
  • Chen, Z.; Chen, M.; Yu, Y. L.; Wu, L. M. Robust Synthesis of Free-Standing and Thickness Controllable Conjugated Microporous Polymer Nanofilms. Chem. Commun. 2017, 53, 1989–1992. DOI: 10.1039/C6CC09763D.
  • Lin, G. Q.; Ding, H. M.; Yuan, D. Q.; Wang, B. S.; Wang, C. A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. J. Am. Chem. Soc. 2016, 138, 3302–3305. DOI: 10.1021/jacs.6b00652.
  • Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical Sensing in Two Dimensional Porous Covalent Organic Nanosheets. Chem. Sci. 2015, 6, 3931–3939. DOI: 10.1039/C5SC00512D.
  • Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. An Azine-Linked Covalent Organic Framework. J. Am. Chem. Soc. 2013, 135, 17310–17313. DOI: 10.1021/ja4103293.
  • Guo, L.; Zeng, X. F.; Lan, J. H.; Yun, J.; Cao, D. P. Absorption Competition Quenching Mechanism of Porous Covalent Organic Polymer as Luminescent Sensor for Selective Sensing Fe3+. Chem. Select. 2017, 2, 1041–1047. DOI: 10.1002/slct.201602076.
  • Zhao, D. H.; Swager, T. M. Sensory Responses in Solution vs Solid State: A Fluorescence Quenching Study of Poly(Iptycenebutadiynylene)s. Macromolecules 2005, 38, 9377–9384. DOI: 10.1021/ma051584y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.