313
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Thermally expandable nanocapsules obtained from surfactant-free emulsion polymerization

, , , , &
Pages 274-282 | Received 02 May 2019, Accepted 22 Oct 2019, Published online: 19 Nov 2019

References

  • Jonsson, M.; Nordin, O.; Kron, A. L.; et al. Thermally Expandable Microspheres with Excellent Expansion Characteristics at High Temperature. J. Appl. Polym. Sci. 2010, 117, 384–392. DOI: 10.1002/app.31543.
  • Gouin, S. Microencapsulation: Industrial Appraisal of Existing Technologies and Trends. Trends Food Sci. Technol. 2004, 15, 330–347. DOI: 10.1016/j.tifs.2003.10.005.
  • Chen, S.-Y.; Sun, Z.-C.; Li, L.-H.; Xiao, Y.-H.; Yu, Y.-M. Preparation and Characterization of Conducting Polymer-Coated Thermally Expandable Microspheres. Chin. Chem. Lett. 2017, 28, 658–662. DOI: 10.1016/j.cclet.2016.11.005.
  • Jeoung, S. K.; Han, I. S.; Jung, Y. J.; et al. Fabrication of Thermally Expandable Core-Shell Microcapsules Using Organic and Inorganic Stabilizers and Their Application. J. Appl. Polym. Sci. 2016, 133, 44247. DOI: 10.1002/App.44247.
  • Hu, J.; Zheng, Z.; Wang, F.; Tu, W.; Lin, L. Synthesis and Characterisation of Thermally Expandable Microcapsules by Suspension Polymerisation. Pigm. Resin Technol. 2009, 38, 280–284. DOI: 10.1108/03699420910988732.
  • Safajou-Jahankhanemlou, M.; Abbasi, F.; Salami-Kalajahi, M. Synthesis and Characterization of Thermally Expandable PMMA-Based Microcapsules with Different Cross-Linking Density. Colloid Polym. Sci. 2016, 294, 1055–1064. DOI: 10.1007/s00396-016-3862-2.
  • Jonsson, M.; Nordin, O.; Malmström, E. Increased Onset Temperature of Expansion in Thermally Expandable Microspheres through Combination of Crosslinking Agents. J. Appl. Polym. Sci. 2011, 121, 369–375. DOI: 10.1002/app.33585.
  • Jonsson, M.; Nordin, O.; Kron, A. L.; et al. Influence of Crosslinking on the Characteristics of Thermally Expandable Microspheres Expanding at High Temperature. J. Appl. Polym. Sci. 2010, 118, 1219–1229. DOI: 10.1002/app.32301.
  • Vamvounis, G.; Jonsson, M.; Malmström, E.; Hult, A. Synthesis and Properties of Poly(3-n-Dodecylthiophene) Modified Thermally Expandable Microspheres. Eur. Polym. J. 2013, 49, 1503–1509. DOI: 10.1016/j.eurpolymj.2013.01.010.
  • Zhou, S.; Li, Z.; Zhou, Z.; Xu, W.; Ma, H.; Ren, F. Simple Method for Preparation of Thermally Expandable Microspheres of PMMA Encapsulating NaHCO3 via Thermally Induced Phase Separation. J. Appl. Polym. Sci. 2018, 135, 46179. DOI: 10.1002/app.46179.
  • Safajou-Jahankhanemlou, M.; Abbasi, F.; Salami-Kalajahi, M. Synthesis and Characterization of Poly (Methyl Methacrylate)/Graphene-Based Thermally Expandable Microcapsules. Polym. Compos. 2018, 39, 950–960. DOI: 10.1002/pc.24025.
  • Jonsson, M.; Nordin, O.; Malmström, E.; Hammer, C. Suspension Polymerization of Thermally Expandable Core/Shell Particles. Polymer 2006, 47, 3315–3324. DOI: 10.1016/j.polymer.2006.03.013.
  • Lv, X.-H.; Wang, L.-P.; Li, G.; Gao, X.-X.; Pan, P.-P.; Zhang, L.-M. Preparation and Characterization of Optically Functional Hollow Sphere Hybrid Materials by Surface-Initiated RATRP and “Click” Chemistry. Chin. Chem. Lett. 2013, 24, 335–337. DOI: 10.1016/j.cclet.2013.02.009.
  • Nishiyama, Y.; Uto, N.; Sato, C.; Sakurai, H. Dismantlement Behavior and Strength of Dismantlable Adhesive Including Thermally Expansive Particles. Int. J. Adhes. Adhes. 2003, 23, 377–382. DOI: 10.1016/S0143-7496(03)00067-8.
  • Rheem, M. J.; Jung, H.; Ha, JUk.; Baeck, S.-H.; Shim, S. E. Suspension Polymerization of Thermally Expandable Microspheres Using Low-Temperature Initiators. Colloid Polym. Sci. 2017, 295, 171–180. DOI: 10.1007/s00396-016-3993-5.
  • Xie, G. M.; Pan, P. J.; Bao, Y. Z. Morphology and Blowing Agent Encapsulation Efficiency of Vinylidene Chloride Copolymer Microspheres Synthesized by Suspension Polymerization in the Presence of a Blowing Agent. J. Appl. Polym. Sci. 2017, 134, 44376. DOI: 10.1002/app.44376.
  • Önder, Ö. C.; Yilgör, E.; Yilgör, I. Fabrication of Rigid Poly (Lactic Acid) Foams via Thermally Induced Phase Separation. Polymer 2016, 107, 240–248. DOI: 10.1016/j.polymer.2016.11.025.
  • Ogawa, H.; Ito, A.; Taki, K.; Ohshima, M. A New Technique for Foaming Submicron Size Poly (Methyl Methacrylate) Particles. J. Appl. Polym. Sci. 2007, 106, 2825–2830. DOI: 10.1002/app.26944.
  • Lu, S. L.; Ramos, J.; Forcada, J. Self-Stabilized Magnetic Polymeric Composite Nanoparticles by Emulsifier-Free Miniemulsion Polymerization. Langmuir 2007, 23, 12893–12900. DOI: 10.1021/la702281k.
  • Kitayama, Y.; Chaiyasat, A.; Minami, H.; Okubo, M. Emulsifier-Free, Organotellurium-Mediated Living Radical Emulsion Polymerization of Styrene: Polymerization Loci. Macromolecules 2010, 43, 7465–7471. DOI: 10.1021/ma1013034.
  • Serrano-Medina, A.; Cornejo-Bravo, J. M.; Licea-Claverie, A. Synthesis of pH and Temperature Sensitive, Core-Shell Nano/Microgels, by One Pot, Soap-Free Emulsion Polymerization. J Colloid Interface Sci. 2012, 369, 82–90. DOI: 10.1016/j.jcis.2011.12.045.
  • Shi, Y.; Shan, G.; Shang, Y. Role of Poly (Ethylene Glycol) in Surfactant-Free Emulsion Polymerization of Styrene and Methyl Methacrylate. Langmuir 2013, 29, 3024–3033. DOI: 10.1021/la304847a.
  • Lee, J.; Hong, C. K.; Choe, S.; Shim, S. E. Synthesis of Polystyrene/Silica Composite Particles by Soap-Free Emulsion Polymerization Using Positively Charged Colloidal Silica. J. Colloid Interface Sci. 2007, 310, 112–120. DOI: 10.1016/j.jcis.2006.11.008.
  • Zhang, H.; Zhang, Y.; Wu, C.; Tan, H.; Wang, S.; Zhang, B.; Zhang, Q. Preparation and Photothermal Study of Polystyrene Coated with Gold Nanoshell Composite Particles. J. Mater. Sci. 2017, 52, 6581–6590. DOI: 10.1007/s10853-017-0893-0.
  • Ngai, T.; Wu, C. Double Roles of Stabilization and Destabilization of Initiator Potassium Persulfate in Surfactant-Free Emulsion Polymerization of Styrene under Microwave Irradiation. Langmuir 2005, 21, 8520–8525. DOI: 10.1021/la0506630.
  • Hou, Z.; Xia, Y.; Qu, W.; Kan, C. Preparation and Properties of Thermoplastic Expandable Microspheres with P(VDC-AN-MMA) Shell by Suspension Polymerization. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 427–431. DOI: 10.1080/00914037.2014.958831.
  • Hou, Z. S.; Kan, C. Y. Preparation and Properties of Thermoexpandable Polymeric Microspheres. Chin. Chem. Lett. 2014, 25, 1279–1281. DOI: 10.1016/j.cclet.2014.04.011.
  • Chen, S. Y.; Sun, Z. C.; Li, L. H. Preparation and Characterization of Thermally Expandable Microspheres. Mater. Sci. Forum. 2016, 852, 596–600. DOI: 10.4028/www.scientific.net/MSF.852.596.
  • Fang, Y. Z.; Yang, S.; Wu, G. Y. Free Radicals, Antioxidants, and Nutrition. Nutrition 2002, 18, 872–879. DOI: 10.1016/S0899-9007(02)00916-4.
  • Tauer, K. Comment on the Development of Particle Surface Charge Density during Surfactant-Free Emulsion Polymerization with Ionic Initiators. Macromolecules 1998, 31, 9390–9391. DOI: 10.1021/ma981413b.
  • Camli, S. T.; Buyukserin, F.; Balci, O.; Budak, G. G. Size Controlled Synthesis of Sub-100 nm Monodisperse Poly(Methylmethacrylate) Nanoparticles Using Surfactant-Free Emulsion Polymerization. J. Colloid Interface Sci. 2010, 344, 528–532. DOI: 10.1016/j.jcis.2010.01.041.
  • Goodall, A. R.; Wilkinson C, M.; Hearn, J. Mechanism of Emulsion Polymerization of Styrene in Soap-Free Systems. J. Polym. Sci.: Polym. Chem. Ed. 1977, 15, 2193–2218. DOI: 10.1002/pol.1977.170150912.
  • Bme, V. d. H. Kinetics of emulsion polymerization. Adv. Chem. Ser. 1962, 34, 6–31. DOI: 10.1021/ba-1962-0034.ch001.
  • Ni, H. M.; Du, Y. Z.; Ma, G. H.; Nagai, M.; Omi, S. Mechanism of Soap-Free Emulsion Polymerization of Styrene and 4-Vinylpyridine: Characteristics of Reaction in the Monomer Phase, Aqueous Phase, and Their Interface. Macromolecules 2001, 34, 6577–6585. DOI: 10.1021/ma010829d.
  • Goodwin, J. W.; Hearn, J.; Ho, C. C.; Ottewill, R. H. The Preparation and Characterisation of Polymer Latices Formed in the Absence of Surface Active Agents. Br. Polym. J. 1973, 5, 341–362. DOI: 10.1002/pi.4980050503.
  • Roe, C. P.; Brass, P. D. The Rate of Particle Growth in Persulfate Initiated Emulsion Polymerization. J. Polym. Sci. 1957, 24, 401–416. DOI: 10.1002/pol.1957.1202410708.
  • Piaggio, F.; Kondylis, V.; Pastorino, F.; Di Paolo, D.; Perri, P.; Cossu, I.; Schorn, F.; Marinaccio, C.; Murgia, D.; Daga, A.; et al. A Novel Liposomal Clodronate Depletes Tumor-Associated Macrophages in Primary and Metastatic Melanoma: Anti-Angiogenic and Anti-Tumor Effects. J. Control Release 2016, 223, 165–177. 2016/01/09. DOI: 10.1016/j.jconrel.2015.12.037.
  • Xing, Y. X.; Xu, K.; Peng, J.; Lin, W. H.; Gao, S. X.; Ren, Y. Y.; Chen, M. C. Polymerizable Molecular Silsesquioxane-Cages Armored Hybrid Microcapsules with In Situ Shell Functionalization. Chem. Eur. J. 2016, 22, 2114–2126. DOI: 10.1002/chem.201504473.
  • Müller, R. H.; Freitas, C. Effect of Light and Temperature on Zeta Potential and Physical Stability in Solid Lipid Nanoparticle (SLN™) Dispersions. Int. J. Pharm. 1998, 168, 221–229. DOI: 10.1016/S0378-5173(98)00092-1.
  • Kawaguchi, Y.; Oishi, T. Synthesis and Properties of Thermoplastic Expandable Microspheres: The Relation between Crosslinking Density and Expandable Property. J. Appl. Polym. Sci. 2004, 93, 505–512. DOI: 10.1002/app.20460.
  • Kawaguchi, Y.; Itamura, Y.; Onimura, K.; Oishi, T. Effects of the Chemical Structure on the Heat Resistance of Thermoplastic Expandable Microspheres. J. Appl. Polym. Sci. 2005, 96, 1306–1312. DOI: 10.1002/app.21429.
  • Tseng, C. M.; Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W. Uniform Polymer Particles by Dispersion Polymerization in Alcohol. J. Polym. Sci. A: Polym. Chem. 1986, 24, 2995–3007. DOI: 10.1002/pola.1986.080241126.
  • Song, J. S.; Winnik, M. A. Cross-Linked, Monodisperse, Micron-Sized Polystyrene Particles by Two-Stage Dispersion Polymerization. Macromolecules 2005, 38, 8300–8307. DOI: 10.1021/ma050992z.
  • Lee, K. C.; Wi, H. A. Highly Crosslinked Micron-Sized, Monodispersed Polystyrene Particles by Semicontinuous Dispersion Polymerization. II. Semicontinuous, Delayed Addition and Seeded Semicontinuous Processes. J. Appl. Polym. Sci. 2010, 115, 3092–3102. DOI: 10.1002/app.31187.
  • Shen, S.; Sudol, E. D.; El-Aasser, M. S. Dispersion Polymerization of Methyl Methacrylate: Mechanism of Particle Formation. J. Polym. Sci. A: Polym. Chem. 1994, 32, 1087–1100. DOI: 10.1002/pola.1994.080320611.
  • Chiu, Y. Y.; Lee, L. J. Microgel Formation in the Free Radical Crosslinking Polymerization of Ethylene Glycol Dimethacrylate (EGDMA). 1. Experimental. J. Polym. Sci. A: Polym. Chem. 1995, 33, 257–267. DOI: 10.1002/pola.1995.080330208.
  • Yuan, T.; Zhang, C.; Zhou, C.; Tu, W.; Hu, J.; Yang, Z. Fabrication of Novel Thermal-Expandable Microcapsules and Their Applications in Intumescent Flame-Retardant Water-Based Coatings. Preprints. 2017060096 2017. DOI: 10.20944/preprints201706.0096.v1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.