125
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of polymer-supported Zn(II) as a novel and green nanocatalyst for promoting click reactions and using design of experiment for optimization of reaction conditions

, ORCID Icon &
Pages 488-498 | Received 03 Feb 2019, Accepted 30 Jan 2020, Published online: 13 Feb 2020

References

  • Sharpless, K. B.; Manetsch, R. In Situ Click Chemistry: A Powerful Means for Lead Discovery. Expert Opin. Drug Discov. 2006, 16, 525. DOI: 10.1517/17460441.1.6.525.
  • Abd-Elaal, A. A.; Aiad, I.; Shaban, S. M.; Tawfik, S. M.; Sayed, A. Synthesis and Evaluation of Some Triazole Derivatives as Corrosion Inhibitors and Biocides. J. Surfact. Deterg. 2014, 17, 483–491. DOI: 10.1007/s11743-013-1547-0.
  • Duan, T.; Fan, K.; Fu, Y.; Zhong, C.; Chen, X.; Peng, T.; Qin, J. Triphenylamine-Based Organic Dyes Containing a 1,2,3-Triazole Bridge for Dye-Sensitized Solar Cells via a ‘Click’ Reaction. Dyes Pigm. 2012, 94, 28–33. DOI: 10.1016/j.dyepig.2011.11.008.
  • Abu-Orabi, S. T.; Atfah, M. A.; Jibril, I.; Mari'i, F. M.; Ali, A. A.-S. Dipolar Cycloaddition Reactions of Organic Azides with Some Acetylenic Compounds. J. Heterocycl. Chem. 1989, 26, 1461–1468. DOI: 10.1002/jhet.5570260541.
  • Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A. Click Chemistry Reactions in Medicinal Chemistry: Applications of the 1,3-Dipolar Cycloaddition between Azides and Alkynes. Med. Res. Rev. 2008, 28, 278–308. DOI: 10.1002/med.20107.
  • Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem. Rev. 2013, 113, 4905–4979. DOI: 10.1021/cr200409f.
  • Totir, M. A.; Padayatti, P. S.; Helfand, M. S.; Carey, M. P.; Bonomo, R. A.; Carey, P. R.; Akker, F. Effect of the Inhibitor-Resistant M69V Substitution on the Structures and Populations of trans-Enamine β-Lactamase Intermediates. Biochemistry 2006, 45, 11895–11904. DOI: 10.1021/bi060990m.
  • Bian, J.; Zhang, L.; Han, Y.; Wang, C.; Zhang, L. Histone Deacetylase Inhibitors: Potent Anti-Leukemic Agents. CMC 2015, 22, 2065–2074. DOI: 10.2174/0929867322666150416094720.
  • Röhrig, U. F.; Majjigapu, S. R.; Grosdidier, A.; Bron, S.; Stroobant, S.; Pilotte, L.; Colau, D.; Vogel, P.; Eynde, B. J.; Zoete, V.; Michielin, O. Rational Design of 4-Aryl-1,2,3-Triazoles for Indoleamine 2,3-Dioxygenase 1 Inhibition. J. Med. Chem. 2012, 55, 5270–5290. DOI: 10.1021/jm300260v.
  • El Akri, K.; Bougrin, K.; Balzarini, J.; Faraj, A.; Benhida, R. Efficient Synthesis and In Vitro Cytostatic Activity of 4-Substituted Triazolyl-Nucleosides. Bioorg. Med. Chem. Lett. 2007, 17, 6656–6659. DOI: 10.1016/j.bmcl.2007.08.077.
  • Heravi, M. M.; Tamimi, M.; Yahyavi, H.; Hosseinnejad, T. Huisgen’s Cycloaddition Reactions: A Full Perspective. Curr. Org. Chem. 2016, 20, 1591. DOI: 10.2174/1385272820666151217183010.
  • Jin, T.; Yan, M.; Yamamoto, Y. Click Chemistry of Alkyne–Azide Cycloaddition Using Nanostructured Copper Catalysts. ChemCatChem 2012, 4, 1217. DOI: 10.1002/cctc.201200193.
  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Functionality from a Few Good Reactions. Angew. Chem. 2001, 113, 2056–2075.
  • Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(i)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. DOI: 10.1021/jo011148j.
  • Sharma, R. K.; Mishra, M.; Sharma, S.; Dutta, S. Zinc(II) Complex Immobilized on Amine Functionalized Silica Gel: A Novel, Highly Efficient and Recyclable Catalyst for Multicomponent Click Synthesis of 1,4-Disubstituted 1,2,3-Triazoles. J. Coord. Chem. 2016, 69, 1152–1165. DOI: 10.1080/00958972.2016.1165807.
  • Sun, Q.; Wang, Y.-Q.; Ge, Z.-M.; Cheng, T.-M.; Li, R.-T. A Highly Efficient Solvent-Free Synthesis of Dihydropyrimidinones Catalyzed by Zinc Chloride. Synthesis 2004, 7, 1047. DOI: 10.1055/s-2004-822331.
  • Armor, J. N. New Catalytic Technology Commercialized in the USA during the 1990s. Appl. Catal. A: Gen. 2001, 222, 407–426. DOI: 10.1016/S0926-860X(01)00846-8.
  • Rashed, M. N.; Siddiki, S. M. A. H.; Ali, M. A.; Moromi, S. K.; Touchy, A. S.; Kon, K.; Toyao, T.; Shimizu, K-i. Heterogeneous Catalysts for the Cyclization of Dicarboxylic Acids to Cyclic Anhydrides as Monomers for Bioplastic Production. Green Chem. 2017, 19, 3238–3242. DOI: 10.1039/C7GC00538E.
  • Kulbak, E. B.; Goren, K.; Portnoy, M. Advantages of Polymer-Supported Multivalent Organocatalysts for the Baylis-Hillman Reaction over Their Soluble Analogues. Pure Appl. Chem. 2014, 86, 1805. DOI: 10.1515/pac-2014-0721.
  • Lu, J.; Toy, P. H. Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chem. Rev. 2009, 109, 815–838. DOI: 10.1021/cr8004444.
  • Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. DOI: 10.1021/ja00897a025.
  • Fridkin, M.; Patchornik, A.; Katchalski, E. Use of Polymers as Chemical Reagents. I. Preparation of Peptides. J. Am. Chem. Soc. 1966, 88, 3164–3165. DOI: 10.1021/ja00965a070.
  • Kirschning, A.; Monenschein, H.; Wittenberg, R. Functionalized Polymers—Emerging Versatile Tools for Solution‐Phase Chemistry and Automated Parallel Synthesis. Angew. Chem. Int. Ed. 2001, 40, 650–679. DOI: 10.1002/1521-3773(20010216)40:4<650::AID-ANIE6500>3.0.CO;2-C.
  • Dandia, A.; Parewa, V.; Jain, A. K.; Rathore, K. S. Step-Economic, Efficient, ZnS Nanoparticle-Catalyzed Synthesis of Spirooxindole Derivatives in Aqueous Medium via Knoevenagel Condensation Followed by Michael Addition. Green Chem. 2011, 13, 2135. DOI: 10.1039/c1gc15244k.
  • Jia, Z.; Li, T. Necking Limit of Substrate-Supported Metal Layers under Biaxial In-Plane Loading. Int. J. Plast. 2013, 51, 65–79. DOI: 10.1016/j.ijplas.2013.06.007.
  • Laszlo, P.; Mathy, A. Catalysis of Friedel-Crafts Alkylation by a Montmorillonite Doped with Transition‐Metal Cations. Helv. Chim. Acta 1987, 70, 577–586. DOI: 10.1002/hlca.19870700310.
  • Nauert, S. L.; Savereide, L.; Notestein, J. M. Role of Support Lewis Acid Strength in Copper-Oxide-Catalyzed Oxidative Dehydrogenation of Cyclohexane. ACS Catal. 2018, 8, 7598–7607. DOI: 10.1021/acscatal.8b00935.
  • Sebti, S.; Tahir, R.; Nazih, R.; Boulaajaj, S. Comparison of Different Lewis Acid Supported on Hydroxyapatite as New Catalysts of Friedel–Crafts Alkylation. Appl. Catal. A: Gen. 2001, 218, 25–30. DOI: 10.1016/S0926-860X(01)00599-3.
  • Kidwai, M.; Jain, A.; Poddar, R. Zn [(L) Proline]2 in Water: A New Easily Accessible and Recyclable Catalytic System for the Synthesis of Pyrazoles. J. Organomet. Chem. 2011, 696, 1939. DOI: 10.1002/chin.201139160.
  • Wei, B.; Zhang, Z.; Dai, Z.; Zhang, K. Hydroxyapatite Supported ZnCl2 Catalyst for the Acylation of Anisole. Acta Pet. Sin. 2011, 27, 606.
  • Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent Synthesis of 1,2,3-Triazoles in Water Catalyzed by Copper Nanoparticles on Activated Carbon. Adv. Synth. Catal. 2010, 352, 3208–3214. DOI: 10.1002/adsc.201000637.
  • Heravi, M. M.; Talaei, B. Chapter Five - Ketenes as Privileged Synthons in the Synthesis of Heterocyclic Compounds Part 3: Six-Membered Heterocycles. Adv. Heterocycl. Chem. 2016, 118, 195.
  • Talaei, B.; Heravi, M. M. Chapter One - Diketene a Privileged Synthon in the Synthesis of Heterocycles. Part 2: Six-Membered Ring Heterocycles. Adv. Heterocycl. Chem. 2018, 125, 1–106.
  • Heravi, M. M.; Talaei, B. Chapter Two - Diketene as Privileged Synthon in the Syntheses of Heterocycles Part 1: Four- and Five-Membered Ring Heterocycles. Adv. Heterocycl. Chem. 2017, 122, 43.
  • Heravi, M. M.; Talaei, B. Chapter Three - Ketenes as Privileged Synthons in the Syntheses of Heterocyclic Compounds Part 2: Five-Membered Heterocycles. Adv. Heterocycl. Chem. 2015, 114, 147.
  • Heravi, M. M.; Vavsari, V. F. Recent Advances in Application of Amino Acids: Key Building Blocks in Design and Syntheses of Heterocyclic Compounds. Adv. Heterocycl. Chem. 2015, 114, 77.
  • Heravi, M. M.; Zadsirjan, V. Chapter Five - Recent Advances in the Synthesis of Benzo[b]Furans. Adv. Heterocycl. Chem. 2015, 117, 261.
  • Heravi, M. M.; Talaei, B. Chapter Four - Ketenes as Privileged Synthons in the Syntheses of Heterocyclic Compounds. Part 1: Three- and Four-Membered Heterocycles. Adv. Heterocycl. Chem. 2014, 113, 143.
  • Heravi, M. M.; Khaghaninejad, S.; Nazari, N. Chapter Five - Bischler–Napieralski Reaction in the Syntheses of Isoquinolines. Adv. Heterocycl. Chem. 2014, 112, 183.
  • Heravi, M. M.; Khaghaninejad, S.; Mostofi, M. Chapter One - Pechmann Reaction in the Synthesis of Coumarin Derivatives. Adv. Heterocycl. Chem. 2014, 112, 1.
  • Khaghaninejad, S.; Heravi, M. M. Chapter Three - Paal–Knorr Reaction in the Synthesis of Heterocyclic Compounds. Adv. Heterocycl. Chem. 2014, 111, 95.
  • Heravi, M. M.; Alishiri, T. Chapter One - Dimethyl Acetylenedicarboxylate as a Building Block in Heterocyclic Synthesis. Adv. Heterocycl. Chem. 2014, 113, 1.
  • Heravi, M. M.; Mousavizadeh, F.; Ghobadi, N.; Tajbakhsh, M. A Green and Convenient Protocol for the Synthesis of Novel Pyrazolopyranopyrimidines via a One-Pot, Four-Component Reaction in Water. Tetrahedron Lett. 2014, 55, 1226–1228. DOI: 10.1016/j.tetlet.2014.01.004.
  • Heravi, M. M.; Daraie, M. A Novel and Efficient Five-Component Synthesis of Pyrazole Based Pyrido[2,3-d]Pyrimidine-Diones in Water: A Triply Green Synthesis. Molecules 2016, 21, 441. DOI: 10.3390/molecules21040441.
  • Daraie, M.; Heravi, M. M. Molecular Diversity of Four-Component Synthesis of Pyrazole-Based Pyrido[2,3-d]Pyrimidine-Diones in Water: A Green Synthesis. Arkivoc 2016, 2016, 328–338.
  • Mirsafaei, R.; Heravi, M. M.; Ahmadi, S.; Moslemin, M. H.; Hosseinnejad, T. In Situ Prepared Copper Nanoparticles on Modified KIT-5 as an Efficient Recyclable Catalyst and Its Applications in Click Reactions in Water. J. Mol. Catal. A: Chem. 2015, 402, 100–108. DOI: 10.1016/j.molcata.2015.03.006.
  • Heravi, M. M.; Mahdizade, S. J.; Esfandiari, M.; Hashemi, E. Experimental and Computational Studies on Catalytic Activity of Novel Adenine-Based Nano Cu(I) Polymers in Regioselective Synthesis of 1,4-Disubstituted 1,2,3-Triazoles. J. Inorg. Organomet. Polym. 2018, 28, 767–776. DOI: 10.1007/s10904-017-0727-1.
  • Hossiennejad, T.; Daraie, M.; Heravi, M. M.; Tajoddin, N. N. Computational and Experimental Investigation of Immobilization of CuI Nanoparticles on 3-Aminopyridine Modifid Poly(Styrene-co-Maleic Anhydride) and It’s Catalytic Application in Regioselective Synthesis of 1,2,3-Triazoles. J. Inorg. Organomet. Polym. Mater. 2017, 27, 861–870. DOI: 10.1007/s10904-017-0530-z.
  • Lee, S. S.; Ahn, T. O. Direct Polymer Reaction of Poly(Styrene-co-Maleic Anhydride): Polymeric Imidization. J. Appl. Polym. Sci. 1999, 71, 1187–1196. DOI: 10.1002/(SICI)1097-4628(19990214)71:7<1187::AID-APP17>3.0.CO;2-N.
  • Finke, A. D.; Elleby, E. C.; Boyd, M. J.; Weissman, H.; Moore, J. S. Zinc Chloride-Promoted Aryl Bromide − Alkyne Cross-Coupling Reactions at Room Temperature. J. Org. Chem. 2009, 74, 8897–8900.
  • Khazaei, A.; Sarmasti, N.; Seyf, J. Y.; Tavasoli, M. Synthesis of Hexahydroquinoline (HHQ) Derivatives Using ZrOCl2·8H2O as a Potential Green Catalyst and Optimization of Reaction Conditions Using Design of Experiment (DOE). RSC Adv. 2015, 5, 101268–101275. DOI: 10.1039/C5RA16102A.
  • Zolfigol, A.; Khazaei, M.; Sarmasti, A.; Yousefi, N.; Seyf, J.; Khakyzadeh, V.; Moosavi-Zare, A. R. Programming of Microwave-Assisted Synthesis of New Isophthalate Derivatives Using ZrOCl2 as a Catalyst under Solvent-Free Condition by Experimental Design. J. Mol. Catal. A: Chem. 2014, 393, 142–149. DOI: 10.1016/j.molcata.2014.06.014.
  • Hashemi, E.; Beheshtiha, Y. S.; Ahmadi, S.; Heravi, M. M. In Situ Prepared CuI Nanoparticles on Modified Poly(Styrene-co-Maleic Anhydride): An Efficient and Recyclable Catalyst for the Azide–Alkyne Click Reaction in Water. Transit. Met. Chem. 2014, 39, 593–601. DOI: 10.1007/s11243-014-9838-5.
  • Meng, X.; Xu, X.; Gao, T.; Chen, B. Zn/C-Catalyzed Cycloaddition of Azides and Aryl Alkynes. Eur. J. Org. Chem. 2010, 2010, 5409–5414. DOI: 10.1002/ejoc.201000610.
  • Morozova, M. A.; Yusubov, M. S.; Kratochvil, B.; Eigner, V.; Bondarev, A. A.; Yoshimura, A.; Saito, A.; Zhdankin, V. V.; Trusova, M. E.; Postnikov, P. S. Regioselective Zn(OAc)2-Catalyzed Azide–Alkynecycloaddition in Water: The Green Click-Chemistry. Org. Chem. Front. 2017, 4, 978–985. DOI: 10.1039/C6QO00787B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.