187
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

PEI/GO-codecorated poly(acrylic acid-co-hydroxyethyl methacrylate) fiber as a carrier to support iron ions and its catalytic performance for methylene blue decolorization

, , , &
Pages 531-543 | Received 30 Dec 2019, Accepted 25 Feb 2020, Published online: 06 Mar 2020

References

  • Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H. M. Environmentally-Related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, Quantification, and Treatment. Environ. Int. 2019, 122, 52–66. DOI: 10.1016/j.envint.2018.11.038.
  • Pang, Y. L.; Abdullah, A. Z. Current Status of Textile Industry Wastewater Management and Research Progress in Malaysia: A Review. CLEAN—Soil Air Water 2013, 41, 751–764. DOI: 10.1002/clen.201000318.
  • Zhang, F.; Guo, X.; Qian, D. K.; Sun, T.; Zhang, W.; Dai, K.; Zeng, R. J. Decolorization of Acid Orange 7 by Extreme-Thermophilic Mixed Culture. Bioresour. Technol. 2019, 291, 121875. DOI: 10.1016/j.biortech.2019.121875.
  • Chen, Y.; Feng, L.; Li, H.; Wang, Y.; Chen, G.; Zhang, Q. Biodegradation and Detoxification of Direct Black G Textile Dye by a Newly Isolated Thermophilic Microflora. Bioresour. Technol. 2018, 250, 650–657. DOI: 10.1016/j.biortech.2017.11.092.
  • Albukhari, S. M.; Ismail, M.; Akhtar, K.; Danish, E. Y. Catalytic Reduction of Nitrophenols and Dyes Using Silver Nanoparticles@Cellulose Polymer Paper for the Resolution of Waste Water Treatment Challenges. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 577, 548–561. DOI: 10.1016/j.colsurfa.2019.05.058.
  • Singh, R. L.; Singh, P. K.; Singh, R. P. Enzymatic Decolorization and Degradation of Azo Dyes—A Review. Int. Biodeterior. Biodegrad. 2015, 104, 21–31. DOI: 10.1016/j.ibiod.2015.04.027.
  • Krishnan, J.; Kishore, A. A.; Suresh, A.; Madhumeetha, B.; Prakash, D. G. Effect of pH, Inoculum Dose and Initial Dye Concentration on the Removal of Azo Dye Mixture under Aerobic Conditions. Int. Biodeterior. Biodegrad. 2017, 119, 16–27. DOI: 10.1016/j.ibiod.2016.11.024.
  • Wang, K.; Fu, J.; Wang, S.; Gao, M.; Zhu, J.; Wang, Z.; Xu, Q. Polydopamine-Coated Magnetic Nanochains as Efficient Dye Adsorbent with Good Recyclability and Magnetic Separability. J. Colloid Interface Sci. 2018, 516, 263–273. DOI: 10.1016/j.jcis.2018.01.067.
  • Khan, H. R.; Murtaza, G.; Choudhary, M. A.; Ahmed, Z.; Malik, M. A. Photocatalytic Removal of Carcinogenic Reactive Red S3B Dye by Using ZnO and Cu Doped ZnO Nanoparticles Synthesized by Polyol Method: A Kinetic Study. Sol. Energy 2018, 173, 875–881. DOI: 10.1016/j.solener.2018.08.038.
  • Zhang, M. W.; Lin, K. Y. A.; Huang, C. F.; Tong, S. Enhanced Degradation of Toxic Azo Dye, Amaranth, in Water Using Oxone Catalyzed by MIL-101-NH2 under Visible Light Irradiation. Sep. Purif. Technol. 2019, 227, 115632. DOI: 10.1016/j.seppur.2019.05.074.
  • Nguyen, T. A.; Juang, R. S. Treatment of Waters and Wastewaters Containing Sulfur Dyes: A Review. Chem. Eng. J. 2013, 219, 109–117. DOI: 10.1016/j.cej.2012.12.102.
  • Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A. Z.; Ibrahim, M. H.; Tan, K. B.; Gholami, Z.; Amouzgar, P. Application of Chitosan and Its Derivatives as Adsorbents for Dye Removal from Water and Wastewater: A Review. Carbohydr. Polym. 2014, 113, 115–130. DOI: 10.1016/j.carbpol.2014.07.007.
  • Ozyildiz, G.; Olmez-Hanci, T.; Arslan-Alaton, I. Effect of Nano-Scale, Reduced Graphene Oxide on the Degradation of Bisphenol a in Real Tertiary Treated Wastewater with the Persulfate/UV-C Process. Appl. Catal. B: Environ. 2019, 254, 135–144. DOI: 10.1016/j.apcatb.2019.04.092.
  • Meghlaoui, F. Z.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. Rapid Catalytic Degradation of Refractory Textile Dyes in Fe(II)/Chlorine System at near Neutral pH: Radical Mechanism Involving Dichlorine Radical Anion (Cl2•−)-Mediated Transformation Pathways and Impact of Environmental Matrices. Sep. Purif. Technol. 2019, 227, 115685. DOI: 10.1016/j.seppur.2019.115685.
  • Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic pH Conditions: A Review. Chem. Eng. J. 2017, 320, 608–633. DOI: 10.1016/j.cej.2017.03.084.
  • Ganiyu, S. O.; Zhou, M.; Martínez-Huitle, C. A. Heterogeneous Electro-Fenton and Photoelectro-Fenton Processes: A Critical Review of Fundamental Principles and Application for Water/Wastewater Treatment. Appl. Catal. B: Environ. 2018, 235, 103–129. DOI: 10.1016/j.apcatb.2018.04.044.
  • Pastrana-Martínez, L. M.; Pereira, N.; Lima, R.; Faria, J. L.; Gomes, H. T.; Silva, A. M. Degradation of Diphenhydramine by Photo-Fenton Using Magnetically Recoverable Iron Oxide Nanoparticles as Catalyst. Chem. Eng. J. 2015, 261, 45–52. DOI: 10.1016/j.cej.2014.04.117.
  • Xu, X.; Chen, W.; Zong, S.; Ren, X.; Liu, D. Magnetic Clay as Catalyst Applied to Organics Degradation in a Combined Adsorption and Fenton-Like Process. Chem. Eng. J. 2019, 373, 140–149. DOI: 10.1016/j.cej.2019.05.030.
  • Xu, Y.; Zeng, L.; Li, L.; Chang, Y. S.; Gong, J. Enhanced Oxidative Activity of Zero-Valent Iron by Citric Acid Complexation. Chem. Eng. J. 2019, 373, 891–901. DOI: 10.1016/j.cej.2019.05.093.
  • Jung, K. W.; Lee, S. Y.; Lee, Y. J.; Choi, J. W. Ultrasound-Assisted Heterogeneous Fenton-Like Process for Bisphenol a Removal at Neutral pH Using Hierarchically Structured Manganese Dioxide/Biochar Nanocomposites as Catalysts. Ultrason. Sonochem. 2019, 57, 22–28. DOI: 10.1016/j.ultsonch.2019.04.039.
  • Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. DOI: 10.1016/j.jece.2013.10.011.
  • Wei, X.; Sun, P.; Yang, S.; Zhao, L.; Wu, J.; Li, F.; Pu, Q. Microchip Electrophoresis with Background Electrolyte Containing Polyacrylic Acid and High Content Organic Solvent in Cyclic Olefin Copolymer Microchips for Easily Adsorbed Dyes. J. Chromatogr. A 2016, 1457, 144–150. DOI: 10.1016/j.chroma.2016.06.044.
  • Meng, Q.; Du, L.; Yang, J.; Tang, Y.; Han, Z.; Zhao, K.; Zhang, G. Well-Dispersed Small-Sized MnOx Nanoparticles and Porous Carbon Composites for Effective Methylene Blue Degradation. Colloids Surf. A: Physicochem. Eng. Asp. 2018, 548, 142–149. DOI: 10.1016/j.colsurfa.2018.03.064.
  • Liu, P.; Jiang, L.; Zhu, L.; Wang, A. Novel Covalently Cross-Linked Attapulgite/Poly (Acrylic Acid-co-Acrylamide) Hybrid Hydrogels by Inverse Suspension Polymerization: synthesis Optimization and Evaluation as Adsorbents for Toxic Heavy Metals. Ind. Eng. Chem. Res. 2014, 53, 4277–4285. DOI: 10.1021/ie4038054.
  • Shen, J.; Zhou, Y.; Li, S.; Gu, P.; Xue, G. Hydrogel-Coated Fe3O4 Nanoparticles as an Efficient Heterogeneous Fenton Catalyst for Degradation of Phenol. J. Mater. Sci. 2019, 54, 10684–10694. DOI: 10.1007/s10853-019-03661-y.
  • Gamallo, M.; Fernández, L.; Vázquez-Vázquez, C.; Fondado, A.; Mira, J.; Feijoo, G.; Moreira, M. Development of a Novel Magnetic Reactor Based on Nanostructured Fe3O4@PAA as Heterogenous Fenton Catalyst. Catalysts 2018, 9, 18. DOI: 10.3390/catal9010018.
  • Gui, M.; Ormsbee, L. E.; Bhattacharyya, D. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation. Ind. Eng. Chem. Res. 2013, 52, 10430–10440. DOI: 10.1021/ie400507c.
  • Li, B.; Dong, Y.; Li, M.; Ding, Z. Comparative Study of Different Fe(III)-Carboxylic Fiber Complexes as Novel Heterogeneous Fenton Catalysts for Dye Degradation. J. Mater. Sci. 2014, 49, 7639–7647. DOI: 10.1007/s10853-014-8472-0.
  • Wang, W.; Wang, Y.; Liu, Y.; Li, T. Synthesis of Novel pH-Responsive Magnetic Nanocomposites as Highly Efficient Heterogeneous Fenton Catalysts. Chem. Lett. 2012, 41, 897–899. DOI: 10.1246/cl.2012.897.
  • Kalfus, J.; Singh, N.; Lesser, A. J. Reinforcement in Nano-Filled PAA Hydrogels. Polymer 2012, 53, 2544–2547. DOI: 10.1016/j.polymer.2012.02.057.
  • Lu, Y.; Xu, N.; Lv, Y.; Feng, Y. Fibrous Material Based on a Combination of Poly(Acrylic Acid-co-Hydroxyethyl Methacrylate) with Iron Ions as a Heterogeneous Fenton Catalyst for Dye Oxidative Decomposition. J. Appl. Polym. Sci. 2017, 134, 44875. DOI: 10.1002/app.44875.
  • Lv, Y.; Xu, N.; Feng, Y.; Lu, Y. Fiber Prepared via Swelling and Thermal Cross-Linking as Reusable Fenton Catalyst for Methylene Blue Decolorization. Adv. Polym. Technol. 2018, 37, 3186–3198. DOI: 10.1002/adv.22088.
  • Wang, X.; Han, Q.; Yu, N.; Wang, T.; Wang, C.; Yang, R. GO-AgCl/Ag Nanocomposites with Enhanced Visible Light-Driven Catalytic Properties for Antibacterial and Biofilm-Disrupting Applications. Colloids Surf. B: Biointerfaces 2018, 162, 296–305. DOI: 10.1016/j.colsurfb.2017.11.060.
  • Hou, D.; Ding, C.; Li, K.; Lin, D.; Wang, D.; Wang, J. A Novel Dual-Layer Composite Membrane with Underwater-Superoleophobic/Hydrophobic Asymmetric Wettability for Robust Oil-Fouling Resistance in Membrane Distillation Desalination. Desalination 2018, 428, 240–249. DOI: 10.1016/j.desal.2017.11.039.
  • Mondal, A.; Giri, N.; Sarkar, S.; Majumdar, S.; Ray, R. Tuning the Photocatalytic Activity of ZnO by TM (TM = Fe, Co, Ni) Doping. Mater. Sci. Semicond. Process. 2019, 91, 333–340. DOI: 10.1016/j.mssp.2018.12.003.
  • Li, B.; Luo, Y.; Li, B.; Yuan, X.; Wang, X. Catalytic Performance of Iron-Promoted Nickel-Based Ordered Mesoporous Alumina FeNiAl Catalysts in Dry Reforming of Methane. Fuel Process. Technol. 2019, 193, 348–360. DOI: 10.1016/j.fuproc.2019.05.033.
  • Wang, H.; Gao, Q.; Li, H.; Wang, H. One-Step Template-Free Synthesis of Mn(II)-Doped TiO2 Hierarchical Microspheres with Unique Radiating Fibrous Structure for Efficient Fenton Degradation. Mater. Res. Bull. 2019, 118, 110508. DOI: 10.1016/j.materresbull.2019.110508.
  • Wang, X.; Li, D.; Nan, Z. Effect of N Content in g-C3N4 as Metal-Free Catalyst on H2O2 Decomposition for MB Degradation. Sep. Purif. Technol. 2019, 224, 152–162. DOI: 10.1016/j.seppur.2019.04.088.
  • Wang, L.; Zhu, Y.; Yang, D.; Zhao, L.; Ding, H.; Wang, Z. The Mixed Marriage of Copper and Carbon Ring-g-C3N4 Nanosheet: A Visible-Light-Driven Heterogeneous Fenton-Like Catalyst. Appl. Surf. Sci. 2019, 488, 728–738. DOI: 10.1016/j.apsusc.2019.05.288.
  • Chagas, P. M. B.; Caetano, A. A.; Tireli, A. A.; Cesar, P. H. S.; Corrêa, A. D.; do Rosário Guimarães, I. Use of an Environmental Pollutant from Hexavalent Chromium Removal as a Green Catalyst in the Fenton Process. Sci. Rep. 2019, 9, 1–15. DOI: 10.1038/s41598-019-49196-9.
  • Pan, X.; Cheng, S.; Su, T.; Zuo, G.; Zhao, W.; Qi, X.; Wei, W.; Dong, W. Fenton-Like Catalyst Fe3O4@polydopamine-MnO2 for Enhancing Removal of Methylene Blue in Wastewater. Colloids Surf. B: Biointerfaces 2019, 181, 226–233. DOI: 10.1016/j.colsurfb.2019.05.048.
  • Wang, X.; Pan, S.; Zhang, M.; Qi, J.; Sun, X.; Gu, C.; Wang, L.; Li, J. Modified Hydrous Zirconium Oxide/PAN Nanofibers for Efficient Defluoridation from Groundwater. Sci. Total Environ. 2019, 685, 401–409. DOI: 10.1016/j.scitotenv.2019.05.380.
  • Liu, Y.; Guo, Z.; Hao, L.; Shi, X.; Yan, S.; Yang, H. Polyethyleneimine-AuNPs-Copper Protoporphyrin Nanocomposite: A Novel Biosensor for Sensitive Detection of Hydrogen Peroxide in Human Serum. J. Solid State Electrochem. 2019, 23, 2551–2558. DOI: 10.1007/s10008-019-04322-5.
  • Zhao, L.; Li, J.; Chen, X.; Cheng, D.; Zhang, J.; Yang, H. Highly Sensitive Electrochemical Detection of Hydrogen Peroxide Based on Polyethyleneimine-Au Nanoparticles-Zinc Protoporphyrin. J. Electrochem. Soc. 2019, 166, B631–B636. DOI: 10.1149/2.0831908jes.
  • Jiang, F.; Zhao, W.; Wu, Y.; Wu, Y.; Liu, G.; Dong, J.; Zhou, K. A Polyethyleneimine-Grafted Graphene Oxide Hybrid Nanomaterial: Synthesis and Anti-Corrosion Applications. Appl. Surf. Sci. 2019, 479, 963–973. DOI: 10.1016/j.apsusc.2019.02.193.
  • Geng, J.; Yin, Y.; Liang, Q.; Zhu, Z.; Luo, H. Polyethyleneimine Cross-Linked Graphene Oxide for Removing Hazardous Hexavalent Chromium: Adsorption Performance and Mechanism. Chem. Eng. J. 2019, 361, 1497–1510. DOI: 10.1016/j.cej.2018.10.141.
  • Jiang, L.; Zhu, Z.; Wen, Y.; Ye, S.; Su, C.; Zhang, R.; Shao, W. Facile Construction of Functionalized GO Nanocomposites with Enhanced Antibacterial Activity. Nanomaterials 2019, 9, 913. DOI: 10.3390/nano9070913.
  • Liu, H.; Zhou, Y.; Yang, Y.; Zou, K.; Wu, R.; Xia, K.; Xie, S. Synthesis of Polyethylenimine/Graphene Oxide for the Adsorption of U(VI) from Aqueous Solution. Appl. Surf. Sci. 2019, 471, 88–95. DOI: 10.1016/j.apsusc.2018.11.231.
  • Ghosh, T.; Bardhan, P.; Mandal, M.; Karak, N. Interpenetrating Polymer Network-Based Nanocomposites Reinforced with Octadecylamine Capped Cu/Reduced Graphene Oxide Nanohybrid with Hydrophobic, Antimicrobial and Antistatic Attributes. Mater. Sci. Eng. C: Mater. Biol. Appl. 2019, 105, 110055. DOI: 10.1016/j.msec.2019.110055.
  • Olad, A.; Eslamzadeh, M.; Mirmohseni, A. Physicochemical Evaluation of Nanocomposite Hydrogels with Covalently Incorporated Poly(Vinyl Alcohol) Functionalized Graphene Oxide. J. Appl. Polym. Sci. 2019, 136, 48025. DOI: 10.1002/app.48025.
  • Zhou, Y.; Wang, Y.; Guo, Y. Cuprous Oxide Nanowires/Nanoparticles Decorated on Reduced Graphene Oxide Nanosheets: Sensitive and Selective H2S Detection at Low Temperature. Mater. Lett. 2019, 254, 336–339. DOI: 10.1016/j.matlet.2019.07.119.
  • Hijazi, A.; Azambre, B.; Finqueneisel, G.; Vibert, F.; Blin, J. L. High Iodine Adsorption by Polyethyleneimine Impregnated Nanosilica Sorbents. Microporous Mesoporous Mater. 2019, 288, 109586. DOI: 10.1016/j.micromeso.2019.109586.
  • Karikalan, N.; Elavarasan, M.; Yang, T. C. Effect of Cavitation Erosion in the Sonochemical Exfoliation of Activated Graphite for Electrocatalysis of Acebutolol. Ultrason. Sonochem. 2019, 56, 297–304. DOI: 10.1016/j.ultsonch.2019.04.025.
  • Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M. M.; Cornet, A.; Cirera, A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119, 10123–10129. DOI: 10.1021/acs.jpcc.5b01590.
  • Kaniyoor, A.; Ramaprabhu, S. A Raman Spectroscopic Investigation of Graphite Oxide Derived Graphene. AIP Adv. 2012, 2, 032183. DOI: 10.1063/1.4756995.
  • Geng, N.; Chen, W.; Xu, H.; Lin, T.; Ding, M.; Wang, Y.; Tao, H.; Hu, K. Preparation of Fe3O4/TiO2-N-GO Sonocatalyst and Using for Humic Acid Removal with the Assist of Ultrasound. Mater. Sci. Semicond. Process. 2019, 102, 104593. DOI: 10.1016/j.mssp.2019.104593.
  • Mahmudzadeh, M.; Yari, H.; Ramezanzadeh, B.; Mahdavian, M. Urtica Dioica Extract as a Facile Green Reductant of Graphene Oxide for UV Resistant and Corrosion Protective Polyurethane Coating Fabrication. J. Ind. Eng. Chem. 2019, 78, 125–136. DOI: 10.1016/j.jiec.2019.06.026.
  • Gurzęda, B.; Krawczyk, P. Electrochemical Formation of Graphite Oxide from the Mixture Composed of Sulfuric and Nitric Acids. Electrochim. Acta 2019, 310, 96–103. DOI: 10.1016/j.electacta.2019.04.088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.