320
Views
8
CrossRef citations to date
0
Altmetric
Articles

Study on the monomer reactivity ratio and performance of EPEG-AA (ethylene-glycol monovinyl polyethylene glycol–acrylic acid) copolymerization system

ORCID Icon, , , &
Pages 646-653 | Received 16 Jan 2020, Accepted 31 Mar 2020, Published online: 23 Apr 2020

References

  • Fang, Y. H.; Jiang, Z. J.; Ke, Y. L.; Chen, X. L.; Zheng, F. L.; Lan, Z. D.; Guan, M. Q.; Lai, G. X.; Lin, T. X.; Gui, M. M. Synthesis and Characterization of Comb-Like Polycarboxylate Superplasticizer. Appl. Mech. Mater. 2012, 204–208, 3881–3885. DOI: 10.4028/www.scientific.net/AMM.204-208.3881.
  • Meng, Y.-Y.; Liao, B.; Wang, K.; Nian, F.-W.; Wang, H.-Y.; Pang, H. Effects of Cyclodextrin-Modified Polycarboxylate Superplasticizers on the Dispersion and Hydration Properties of Cement Paste. J. Macromol. Sci. Part A: Pure Appl. Chem. 2019, 56, 933–942. DOI: 10.1080/10601325.2019.1618191.
  • Tian, H.-W.; Kong, X.-M.; Sun, J.-B.; Wang, D.-M.; Huang, C.-L. Fluidizing Effects of Polymers with Various Anchoring Groups in Cement Pastes and Their Sensitivity to Environmental Temperatures. J. Appl. Polym. Sci. 2019, 136, 47494. DOI: 10.1002/App.47494.
  • Pei, J.-K.; Wang, Z.-W.; Ren, J.-G.; Liu, D.-S. Synthesis of Polycarboxylate Superplasticizers Using an Acrylic Acid-Rich Wastewater from Acrolein Production. Adv. Polym. Technol. 2018, 37, 2561–2567. DOI: 10.1002/adv.21931.
  • Hirata, T.; Ye, J.; Branicio, P.; Zheng, J.-W.; Lange, A.; Plank, J.; Sullivan, M. Adsorbed Conformations of PCE Superplasticizers in Cement Pore Solution Unraveled by Molecular Dynamics Simulations. Sci. Rep. 2017, 7, 16599. DOI: 10.1038/s41598-017-16048-3.
  • Ran, Q.-P.; Somasundaran, P.; Miao, C.-W.; Liu, J.-P.; Wu, S.-S.; Shen, J. Effect of the Length of the Side Chains of Comb-Like Copolymer Dispersants on Dispersion and Rheological Properties of Concentrated Cement Suspensions. J. Colloid. Interf. Sci. 2009, 336, 624–633. DOI: 10.1016/j.jcis.2009.04.057.
  • Plank, J.; Pöllmann, K.; Zouaoui, N.; Andres, P.-R.; Schaefer, C. Synthesis and Performance of Methacrylic Ester Based Polycarboxylate Superplasticizers Possessing Hydroxy Terminated Poly(Ethylene Glycol) Side Chains. Cem. Concr. Res. 2008, 38, 1210–1216. DOI: 10.1016/j.cemconres.2008.01.007.
  • Liu, G.-J.; Wei, X.-H.; Wang, Z.-W.; Ren, J.-G. Study on the Activity Difference of Macromonomers for Preparing Polycarboxylic Superplasticizers. J. Appl. Polym. Sci. 2020, 137, 48844. DOI: 10.1002/App.48844.
  • Albrecht, G.; Weichmann, J.; Penkner, J.; Kern, A. EP Patent 0,736,553, Apr. 4, 1996.
  • Lei, L.; Plank, J. A Concept for a Polycarboxylate Superplasticizer Possessing Enhanced Clay Tolerance. Cem. Concr. Res. 2012, 42, 1299–1306. DOI: 10.1016/j.cemconres.2012.07.001.
  • Qian, S.; Yao, Y.; Wang, Z.; Cui, S.; Liu, X.; Jiang, H.; Guo, Z.; Lai, G.; Xu, Q.; Guan, J. Synthesis, Characterization and Working Mechanism of a Novel Polycarboxylate Superplasticizer for Concrete Possessing Reduced Viscosity. Constr. Build. Mater. 2018, 169, 452–461.
  • Lei, L.; Plank, J. Synthesis and Properties of a Vinyl Ether-Based Polycarboxylate Superplasticizer for Concrete Possessing Clay Tolerance. Ind. Eng. Chem. Res. 2014, 53, 1048–1055. DOI: 10.1021/ie4035913.
  • Claudia, C.; Johann, P. Impact of Different Synthesis Methods on the Dispersing Effectiveness of Isoprenol Ether-Based Zwitterionic and Anionic Polycarboxylate (PCE) Superplasticizers. Cem. Concr. Res. 2019, 119, 113–125. DOI: 10.1016/j.cemconres.2019.02.001.
  • Alison, J. S.; Alexander, P. Binary vs. Ternary Reactivity Ratios: Appropriate Estimation Procedures with Terpolymerization Data. Eur. Polym. J. 2019, 105, 442–450. DOI: 10.1016/j.eurpolymj.2018.06.021.
  • Zaremba, D.; Menzel, H.; Kowalsky, W.; Johannes, H.-H. Styrene Based Copolymers for Consistent Reactivity Ratio Evaluation. Mater. Chem. Phys. 2018, 209, 227–232. DOI: 10.1016/j.matchemphys.2018.01.077.
  • Senthilkumar, U.; Ganesan, K.; Reddy, B.-S.-R. Synthesis, Characterization and Reactivity Ratios of Phenylethyl Acrylate/Methacrylate Copolymers. J. Polym. Res. 2003, 10, 21–29. DOI: 10.1023/A:1023938301946.
  • Ajithkumar, M. P.; Yashoda, M. P.; Prasannakumar, S.; Sruthi, T. V.; Sameer Kumar, V. B. Synthesis, Characterization, Microstructure Determination, Thermal Studies of Poly(N-Vinyl Pyrrolidone-Maleic Anhydride-Methyl Methacrylate). J. Macromol. Sci. Part A: Pure Appl. Chem. 2018, 0, 1–7. DOI: 10.1080/10601325.2018.1440178.
  • Zhang, Z.-S.; Wang, Z.-W.; Ren, J.-G.; Pei, J.-K. Polycarboxylate Superplasticizers of Acrylic Acid–Isobutylene Polyethylene Glycol Copolymers: Monomer Reactivity Ratios, Copolymerization Behavior and Performance. Iran. Polym. J. 2016, 25, 549–557. DOI: 10.1007/s13726-016-0446-4.
  • Joshi, R.; Joshi, S. A New Analytical Solution of the Binary Copolymer Composition Equation and Suggested Procedure for Deriving the Monomer Reactivity Ratios. J. Macromol. Sci. Chem. 1971, 5, 1329–1338. DOI: 10.1080/00222337108061112.
  • Kumar, S. V.; Musturappa, T. E.; Prasannakumar, S.; Mahadevan, K. M.; Sherigara, B. S. N. Vinylpyrrolidone and Ethoxyethyl Methacrylate Copolymer: Synthesis, Characterization and Reactivity Ratios. J. Macromol. Sci. Part A: Pure Appl. Chem. 2007, 44, 1161–1169. DOI: 10.1080/10601320701561072.
  • Kelen, T.; Tüdös, F. Analysis of the Linear Methods for Determining Copolymerization Reactivity Ratios: A New Improved Linear Graphic Method. J. Macromol. Sci. 1975, 9, 1–27. DOI: 10.1080/00222337508068644.
  • Niousha, K.; Thomas, A. D.; Alexander, P. Reactivity Ratio Estimation from Cumulative Copolymer Composition Data. Macromol. React. Eng. 2011, 5, 385–403. DOI: 10.1002/mren.201100009.
  • Samaneh, A.; Farshid, Z. Estimation of Reactivity Ratios of Styrene/Butyl Acrylate Copolymer by Ordinary and Generalized Least Square Methods. Iran. Polym. J. 2013, 22, 511–518. DOI: 10.1007/s13726-013-0147-1.
  • Wu, Z.-C.; Yu, L.; Wei, W.; Chen, F.-S.; Qiu, G.-X.; Xiong, H.-M. Reaction Kinetics in Anionic Copolymerization: A Revisit on Mayo-Lewis Equation. Chin. J. Polym. Sci. 2016, 34, 431–438. DOI: 10.1007/s10118-016-1758-8.
  • Erol, I.; Ahmedzade, M. Copolymers of 2-(3-Mesityl-3-Methylcyclobutyl)-2-Ketoethyl Methacrylate with Acrylonitrile and Styrene: Synthesis, Characterization, and Monomer Reactivity Ratios. J. Polym. Res. 2005, 12, 247–255. DOI: 10.1007/s10965-004-4674-5.
  • Svec, F.; Lv, Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal. Chem. 2015, 87, 250–273. DOI: 10.1021/ac504059c.
  • Revillon, A.; Hamaide, T. Macromer Copolymerization Reactivity Ratio Determined by GPC Analysis. Polym. Bull. 1982, 6, 235–241. DOI: 10.1007/bf00255392.
  • Öztürk, T.; Meyvacl, E.; Arslan, T. Synthesis and Characterization of Poly(Vinyl Chloride-g-ε-Caprolactone) Brush Type Graft Copolymers by Ring-Opening Polymerization and “Click” Chemistry. J. Macromol. Sci. Part A: Pure Appl. Chem. 2019, 57, 171–180. DOI: 10.1080/10601325.2019.1680253.
  • Faraguna, F.; Siuc, V.; Vidović, E.; Jukić, A. Reactivity Ratios and Properties of Copolymers of 2-Ethoxyethyl Methacrylate with Dodecyl Methacrylate or Styrene. J. Polym. Res. 2015, 22, 245. DOI: 10.1007/s10965-015-0890-4.
  • Roberge, S.; Dubé, M. A. Bulk Copolymerization of Conjugated Linoleic Acid with Styrene and Butyl Acrylate: Reactivity Ratio Estimation. J. Macromol. Sci. Part A: Pure Appl. Chem. 2015, 52, 961–970. DOI: 10.1080/10601325.2015.1095594.
  • Skeist, I. Copolymerization: The Composition Distribution Curve. J. Am. Chem. Soc. 1946, 68, 1781–1784. DOI: 10.1021/ja01213a031.
  • Plank, J.; Li, H.-Q.; Ilg, M.; Pickelmann, J.; Eisenreich, W.; Yao, Y.; Wang, Z. M. A Microstructural Analysis of Isoprenol Ether-Based Polycarboxylates and the Impact of Structural Motifs on the Dispersing Effectiveness. Cem. Concr. Res. 2016, 84, 20–29. DOI: 10.1016/j.cemconres.2016.02.010.
  • Lv, S.-H.; Ju, H.-B.; Qiu, C.-C.; Ma, Y.-J.; Zhou, Q.-F. Effects of Connection Mode between Carboxyl Groups and Main Chains on Polycarboxylate Superplasticizer Properties. J. Appl. Polym. Sci. 2013, 128, 3925–3932. DOI: 10.1002/app.38608.
  • Plank, J.; Sakai, E.; Miao, C.-W.; Yu, C.; Hong, J.-X. Chemical Admixtures – Chemistry, Applications and Their Impact on Concrete Microstructure and Durability. Cem. Concr. Res. 2015, 78, 81–99. DOI: 10.1016/j.cemconres.2015.05.016.
  • Percec, V.; Wang, J. H. Free Radical Copolymerization of ω-(p-Vinylbenzyl Ether) Macromonomer of Poly(2,6-Dimethyl-1,4-Phenylene Oxide) with Methyl Methacrylate in the Presence of Different Initiators. J. Macromol. Sci. Part A: Pure Appl. Chem. 1991, 28, 221–231. DOI: 10.1080/00222339108054404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.