199
Views
15
CrossRef citations to date
0
Altmetric
Articles

Alternating copolymers with glycyl-glycine and alanyl-alanine side-chain pendants: synthesis, characterization and solution properties

, &
Pages 675-683 | Received 08 Mar 2020, Accepted 13 Apr 2020, Published online: 02 May 2020

References

  • Ramakers, B. E. I.; van Hest, J. C. M.; Lowik, D. W. P. M. Molecular Tools for the Construction of Peptide-Based Materials. Chem. Soc. Rev. 2014, 43, 2743–2756. DOI: 10.1039/c3cs60362h.
  • Mallakpour, S.; Dinari, M. Progress in Synthetic Polymers Based on Natural Amino Acids. J. Macromol. Sci., Part A: Pure Appl. Chem 2011, 48, 644–679.
  • van Hest, J. C. M.; Tirrell, D. A. Protein-Based Materials, toward a New Level of Structural Control. Chem. Commun. 2001, 1897–1904. DOI: 10.1039/b105185g.
  • Kumar, S.; Acharya, R.; Chatterji, U.; De, P. Controlled Synthesis of β-Sheet Polymers Based on Side-Chain Amyloidogenic Short Peptide Segments via RAFT Polymerization. Polym. Chem. 2014, 5, 6039–6050. DOI: 10.1039/C4PY00620H.
  • Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.-A.; Zhong, Z. Functional Polypeptide and Hybrid Materials: Precision Synthesis via α-Amino Acid N-Carboxyanhydride Polymerization and Emerging Biomedical Applications. Prog. Polym. Sci. 2014, 39, 330–364. DOI: 10.1016/j.progpolymsci.2013.10.008.
  • Orbach, R.; Mironi-Harpaz, I.; Adler-Abramovich, L.; Mossou, E.; Mitchell, E. P.; Forsyth, V. T.; Gazit, E.; Seliktar, D. The Rheological and Structural Properties of Fmoc-Peptide-Based Hydrogels: The Effect of Aromatic Molecular Architecture on Self-Assembly and Physical Characteristics. Langmuir 2012, 28, 2015–2022. DOI: 10.1021/la204426q.
  • Welsh, E. R.; Tirrell, D. A. Engineering the Extracellular Matrix: A Novel Approach to Polymeric Biomaterials. I. Control of the Physical Properties of Artificial Protein Matrices Designed to Support Adhesion of Vascular Endothelial Cells. Biomacromolecules 2000, 1, 23–30. DOI: 10.1021/bm0002914.
  • Deming, T. J. Synthetic Polypeptides for Biomedical Applications. Prog. Polym. Sci. 2007, 32, 858–875. DOI: 10.1016/j.progpolymsci.2007.05.010.
  • Lashuel, H. A.; LaBrenz, S. R.; Woo, L.; Serpell, L. C.; Kelly, J. W. Protofilaments, Filaments, Ribbons, and Fibrils from Peptidomimetic Self-Assembly: Implications for Amyloid Fibril Formation and Materials Science. J. Am. Chem. Soc. 2000, 122, 5262–5277. DOI: 10.1021/ja9937831.
  • Marini, D. M.; Hwang, W.; Lauffenburger, D. A.; Zhang, S.; Kamm, R. D. Left-Handed Helical Ribbon Intermediates in the Self-Assembly of a β-Sheet Peptide. Nano Lett. 2002, 2, 295–299. DOI: 10.1021/nl015697g.
  • Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular Self-Assembly of Surfactant-like Peptides to Form Nanotubes and Nanovesicles. Proc. Natl. Acad. Sci. USA 2002, 99, 5355–5360. DOI: 10.1073/pnas.072089599.
  • Reches, M.; Gazit, E. Casting Metal Nanowires within Discrete Self-Assembled Peptide Nanotubes. Science 2003, 300, 625–627. DOI: 10.1126/science.1082387.
  • Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide. J. Am. Chem. Soc. 2002, 124, 15030–15037. DOI: 10.1021/ja027993g.
  • Mahler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E. Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide. Adv. Mater. 2006, 18, 1365–1370. DOI: 10.1002/adma.200501765.
  • Rodriguez-Hernandez, J.; Lecommandoux, S. Reversible inside-out Micellization of pH-Responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers. J. Am. Chem. Soc. 2005, 127, 2026–2027.
  • Sar, P.; Ghosh, S.; Gordievskaya, Y. D.; Goswami, K. G.; Kramarenko, E. U.; De, P. pH-Induced Amphiphilicity-Reversing Schizophrenic Aggregation by Alternating Copolymers. Macromolecules 2019, 52, 8346–8358. DOI: 10.1021/acs.macromol.9b01804.
  • Deguchi, Y.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Periodic Polypeptides Based on Poly(L-Alanylglycine): Biological Synthesis and Verification of the Structure of a Series of Polymers Containing Tandem -(Alagly)xGlugly- Repeats. J. Macromol. Sci., Part A: Pure Appl. Chem. 1994, 11, 1691–1700.
  • Haldar, U.; Pan, A.; Mukherjee, I.; De, P. POSS Semitelechelic Aβ17–19 Peptide Initiated Helical Polypeptides and Their Structural Diversity in Aqueous Medium. Polym. Chem. 2016, 7, 6231–6240.
  • Garanger, E.; Lecommandoux, S. Towards Bioactive Nanovehicles Based on Protein Polymers. Angew. Chem. Int. Ed. 2012, 51, 3060–3062. DOI: 10.1002/anie.201107734.
  • DiMarco, R. L.; Heilshorn, S. C. Multifunctional Materials through Modular Protein Engineering. Adv. Mater. 2012, 24, 3923–3940. DOI: 10.1002/adma.201200051.
  • Link, A. J.; Mock, M. L.; Tirrell, D. A. Non-Canonical Amino Acids in Protein Engineering. Curr. Opin. Biotechnol. 2003, 14, 603–609. DOI: 10.1016/j.copbio.2003.10.011.
  • Kumar, S.; Acharya, R.; Chatterji, U.; De, P. Controlled Synthesis of pH Responsive Cationic Polymers Containing Side-Chain Peptide Moieties via RAFT Polymerization and Their Self- Assembly. J. Mater. Chem. B 2013, 1, 946–957. DOI: 10.1039/C2TB00170E.
  • Kumar, S.; Bheemireddy, V.; De, P. Aβ17–20 Peptide-Guided Structuring of Polymeric Conjugates and Their pH-Triggered Dynamic Response. Macromol. Biosci. 2015, 15, 1447–1456. DOI: 10.1002/mabi.201500134.
  • Lienkamp, K.; Madkour, A. E.; Tew, G. N. Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides. Adv. Polym. Sci. 2010, 251, 141–172.
  • Al Samad, A.; De Winter, J.; Gerbaux, P.; Jerome, C.; Debuigne, A. Unique Alternating Peptide–Peptoid Copolymers from Dipeptides via a Ugi Reaction in Water. Chem. Commun. 2017, 53, 12240–12243. DOI: 10.1039/C7CC06463B.
  • Frisch, H.; Nie, Y.; Raunser, S.; Besenius, P. pH-Regulated Selectivity in Supramolecular Polymerizations: Switching between Co- and Homopolymers. Chem. Eur. J. 2015, 21, 3304–3309. DOI: 10.1002/chem.201406281.
  • Zhou, C.; Yuan, Y.; Zhou, P.; Wang, F.; Hong, Y.; Wang, N.; Xu, S.; Du, J. Highly Effective Antibacterial Vesicles Based on Peptide-Mimetic Alternating Copolymers for Bone Repair. Biomacromolecules 2017, 18, 4154–4162. DOI: 10.1021/acs.biomac.7b01209.
  • Huang, J.; Turner, S. R. Recent Advances in Alternating Copolymers: The Synthesis, Modification, and Applications of Precision Polymers. Polymer 2017, 116, 572–586. DOI: 10.1016/j.polymer.2017.01.020.
  • Ouchi, M.; Liu, D. R.; Sawamoto, M.; Lutz, J.-F. Sequence-Controlled Polymers. Science 2013, 341, 1238149–1238149. DOI: 10.1126/science.1238149.
  • Chen, G. Q.; Wu, Z. Q.; Wu, J. R.; Li, Z. C.; Li, F. M. Synthesis of Alternating Copolymers of N-Substituted Maleimides with Styrene via Atom Transfer Radical Polymerization. Macromolecules 2000, 33, 232–234. DOI: 10.1021/ma991047b.
  • Janovic, Z.; Matusinovic, T. T.; Ranogajec, F. Alternating Copolymerization of Styrene and N-(4-Bromophenyl)Maleimide. J. Macromol. Sci. Pure Appl. Chem. 1992, 29, 801–811. DOI: 10.1080/10601329208054117.
  • Lai, J. T.; Filla, D.; Shea, R. Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents. Macromolecules 2002, 35, 6754–6756. DOI: 10.1021/ma020362m.
  • Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel’s Textbook of Practical Organic Chemistry; Longman Scientific & Technical Copublished in the United States with John Wiley & Sons, Inc: New York, 1989.
  • Goswami, K. G.; Saha, B.; Mete, S.; De, P. Alternating Placement of D- and L-Alanine Moieties in the Polymer Side-Chains. Macromol. Chem. Phys. 2018, 219, 1800398. DOI: 10.1002/macp.201800398.
  • Mete, S.; Goswami, K. G.; De, P. Composition-Dependent Crystallization Behavior of Copolyperoxides from Methyl Methacrylate and 4-Vinylbenzyl Stearate. J. Polym. Sci. 2020, 58, 766–778. DOI: 10.1002/pol.20200029.
  • Moad, G.; Rizzardo.; Thang, S. H. Living Radical Polymerization by the RAFT Process. Aust. J. Chem. 2005, 58, 379–410. DOI: 10.1071/CH05072.
  • Ha, N. T. H. Determination of Triad Sequence Distribution of Copolymers of Maleic Anhydride and Its Derivates with Donor Monomers by 13C N.M.R. Spectroscopy. Polymer 1999, 40, 1081–1086. DOI: 10.1016/S0032-3861(98)00313-9.
  • Barron, P. F.; Hill, D. J. T.; O'Donnell, J. H.; O'Sullivan, P. W. Applications of DEPT Experiments to the 13C NMR of Copolymers: Poly(Styrene-co-Maleic Anhydride) and Poly(Styrene-co-Acrylonitrile). Macromolecules 1984, 17, 1967–1972. DOI: 10.1021/ma00140a016.
  • Mete, S.; Goswami, K. G.; Ksendzov, E.; Kostjuk, S. V.; De, P. Modulation of Side Chain Crystallinity in Alternating Copolymers. Polym. Chem. 2019, 10, 6588–6599. DOI: 10.1039/C9PY01340G.
  • Kumar, S.; De, P. Fluorescent Labelled Dual-Stimuli (pH/Thermo) Responsive Self-Assembled Side-Chain Amino Acid Based Polymers. Polymer 2014, 55, 824–832. DOI: 10.1016/j.polymer.2013.12.054.
  • Roy, S. G.; De, P. Swelling Properties of Amino Acid Containing Cross-Linked Polymeric Organogels and Their Respective Polyelectrolytic Hydrogels with pH and Salt Responsive Property. Polymer 2014, 55, 5425–5434. DOI: 10.1016/j.polymer.2014.08.072.
  • Kumar, S.; Roy, S. G.; De, P. Cationic Methacrylate Polymers Containing Chiral Amino Acid Moieties: Controlled Synthesis via RAFT Polymerization. Polym. Chem. 2012, 3, 1239–1248. DOI: 10.1039/c2py00607c.
  • Sun, H.; Gao, C. Facile Synthesis of Multiamino Vinyl Poly(Amino Acid)s for Promising Bioapplications. Biomacromolecules 2010, 11, 3609–3616. DOI: 10.1021/bm101060m.
  • Huang, J.; Zhou, X.; Lamprou, A.; Maya, F.; Svec, F.; Turner, S. R. Nanoporous Polymers from Cross-Linked Polymer Precursors via tert-Butyl Group Deprotection and Their Carbon Dioxide Capture Properties. Chem. Mater. 2015, 27, 7388–7394. DOI: 10.1021/acs.chemmater.5b03114.
  • Bauri, K.; Saha, B.; Mahanti, J.; De, P. A Nonconjugated Macromolecular Luminogen for Speedy, Selective and Sensitive Detection of Picric Acid in Water. Polym. Chem. 2017, 8, 7180–7187. DOI: 10.1039/C7PY01579H.
  • Saha, B.; Bauri, K.; Bag, A.; Ghorai, P. K.; De, P. Conventional Fluorophore-Free Dual pH- and Thermo-Responsive Luminescent Alternating Copolymer. Polym. Chem. 2016, 7, 6895–6900. DOI: 10.1039/C6PY01738J.
  • Saha, B.; Choudhury, N.; Bhadran, A.; Bauri, K.; De, P. Amino Acid-Derived Alternating Polyampholyte Luminogens. Polym. Chem. 2019, 10, 3306–3317. DOI: 10.1039/C9PY00462A.
  • Li, W.; Che, C.; Pang, J.; Cao, Z.; Jiao, Y.; Xu, J.; Ren, Y.; Li, X. Autofluorescent Polymers: 1H,1H,2H,2H-Perfluoro-1-Decanol Grafted Poly(Styrene-b-Acrylic Acid) Block Copolymers without Conventional Fluorophore. Langmuir 2018, 34, 5334–5341. DOI: 10.1021/acs.langmuir.8b00791.
  • Cataldo, F.; Gobbino, M.; Ursini, O.; Angelini, G. A Study on the Optically Active Polymer Poly-β-Pinene. J. Macromol. Sci., Part A: Pure Appl. Chem. 2007, 44, 1225–1234.
  • Wang, J.; Zhu, X.; Cheng, Z.; Zhang, Z.; Zhu, J. Preparation, Characterization, and Chiral Recognition of Optically Active Polymers Containing Pendent Chiral Units via Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Polym. Sci. A Polym. Chem. 2007, 45, 3788–3797. DOI: 10.1002/pola.22105.
  • Puts, R. D.; Sogah, D. Y. Cationic Ring Opening Cyclopolymerization of Bis(Oxazolines). Synthesis of Chiral Polymers Containing Pendent Heteromacrocycles. Macromolecules 1997, 30, 6826–6836. DOI: 10.1021/ma9618538.
  • Bauri, K.; Narayanan, A.; Haldar, U.; De, P. Polymerization-Induced Self-Assembly Driving Chiral Nanostructured Materials. Polym. Chem. 2015, 6, 6152–6162. DOI: 10.1039/C5PY00919G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.