563
Views
10
CrossRef citations to date
0
Altmetric
Articles

A simple multifunctional PNIPAM-GO/PANI hydrogel preparation strategy and its application in dye adsorption and infrared switching

, , &
Pages 751-760 | Received 17 Apr 2020, Accepted 15 May 2020, Published online: 27 May 2020

References

  • Gao, G.; Wang, Z.; Xu, D.; Wang, L.; Xu, T.; Zhang, H.; Chen, J.; Fu, J. Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. ACS Appl. Mater. Interfaces 2018, 10, 41724–41731. DOI: 10.1021/acsami.8b16402.
  • Gawade, P. M.; Shadish, J. A.; Badeau, B. A.; DeForest, C. A. Logic‐Based Delivery of Site‐Specifically Modified Proteins from Environmentally Responsive Hydrogel Biomaterials. Adv. Mater. 2019, 31, 1902462. DOI: 10.1002/adma.201902462.
  • Ge, L.; Zhang, M.; Wang, R.; Li, N.; Zhang, L.; Liu, S.; Jiao, T. Fabrication of CS/GA/RGO/Pd Composite Hydrogels for Highly Efficient Catalytic Reduction of Organic Pollutants. RSC Adv. 2020, 10, 15091–15097. DOI: 10.1039/D0RA01884H.
  • Mutharani, B.; Ranganathan, P.; Chen, S.-M.; K, D. V. S. Stimuli-Enabled Reversible Switched Aclonifen Electrochemical Sensor Based on Smart PNIPAM/PANI-Cu Hybrid Conducting Microgel. Sensor. Actuat. B-Chem. 2020, 304, 127232. DOI: 10.1016/j.snb.2019.127232.
  • Li, M.; Liao, H.; Deng, Q.; Wu, Y.; Xiao, F.; Wei, X.; Tu, D. Preparation of an Intelligent Hydrogel Sensor Based on g-C3N4 Nanosheets for Selective Detection of Ag+. J. Macromol. Sci. A 2018, 55, 408–413. DOI: 10.1080/10601325.2018.1453260.
  • Bulut, E. Chitosan Coated- and Uncoated-Microspheres of Sodium Carboxymethyl Cellulose/Polyvinyl Alcohol Crosslinked with Ferric Ion: Flurbiprofen Loading and in Vitro Drug Release Study. J. Macromol. Sci. A 2020, 57, 72–82. DOI: 10.1080/10601325.2019.1671770.
  • Zhu, Q.; Vliet, K.; Holten‐Andersen, N.; Miserez, A. A Double‐Layer Mechanochromic Hydrogel with Multidirectional Force Sensing and Encryption Capability. Adv. Funct. Mater. 2019, 29, 1808191. DOI: 10.1002/adfm.201808191.
  • Sharma, G.; Thakur, B.; Naushad, M.; Kumar, A.; Stadler, F. J.; Alfadul, S. M.; Mola, G. T. Applications of Nanocomposite Hydrogels for Biomedical Engineering and Environmental Protection. Environ. Chem. Lett. 2018, 16, 113–146. DOI: 10.1007/s10311-017-0671-x.
  • Grigoryan, B.; Paulsen, S. J.; Corbett, D. C.; Sazer, D. W.; Fortin, C. L.; Zaita, A. J.; Greenfield, P. T.; Calafat, N. J.; Gounley, J. P.; Ta, A. H.; et al. BIOMEDICINE Multivascular Networks and Functional Intravascular Topologies within Biocompatible Hydrogels. Science 2019, 364, 458–464. DOI: 10.1126/science.aav9750.
  • Shao, J.; Ruan, C.; Xie, H.; Li, Z.; Wang, H.; Chu, P. K.; Yu, X.-F. Black-Phosphorus-Incorporated Hydrogel as a Sprayable and Biodegradable Photothermal Platform for Postsurgical Treatment of Cancer. Adv. Sci. (Weinh) 2018, 5, 1700848. DOI: 10.1002/advs.201700848.
  • Shao, J.; Zhang, Z.; Zhao, S.; Wang, S.; Guo, Z.; Xie, H.; Hu, Y. Self‐Healing Hydrogel of Poly (Vinyl Alcohol)/Agarose with Robust Mechanical Property. Starch-Stärke 2019, 71, 1800281. DOI: 10.1002/star.201800281.
  • Hou, N.; Wang, R.; Geng, R.; Wang, F.; Jiao, T.; Zhang, L.; Zhou, J.; Bai, Z.; Peng, Q. Facile Preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter. 2019, 15, 6097–6106. DOI: 10.1039/c9sm00978g.
  • Chen, J.; Luo, Q.; Ma, X. Z. Poly(N-Isopropylacrylamide)@Graphene oxide-Ag Responsive Hydrogels. Characterization and Smart Tunable Catalytic Activity. J. Macromol. Sci. A 2019, 56, 943–951. DOI: 10.1080/10601325.2019.1618192.
  • Qiu, L.; Liu, D.; Wang, Y.; Cheng, C.; Zhou, K.; Ding, J.; Van-Tan, T.; Li, D. Mechanically Robust, Electrically Conductive and Stimuli-Responsive Binary Network Hydrogels Enabled by Superelastic Graphene Aerogels. Adv. Mater. Weinheim. 2014, 26, 3333–3337. DOI: 10.1002/adma.201305359.
  • Wang, S.; Zhang, Z.; Chen, B.; Shao, J.; Guo, Z. Self-Healing Hydrogel of Poly(Vinyl Alcohol)/Graphite Oxide with pH-Sensitive and Enhanced Thermal Properties. J. Appl. Polym. Sci. 2018, 135, 46143. DOI: 10.1002/app.46143.
  • Feng, Y.; Yin, J.; Liu, S.; Wang, Y.; Li, B.; Jiao, T. Facile Synthesis of Ag/Pd Nanoparticle-Loaded Poly(Ethylene Imine) Composite Hydrogels with Highly Efficient Catalytic Reduction of 4-Nitrophenol. ACS Omega. 2020, 5, 3725–3733. DOI: 10.1021/acsomega.9b04408.
  • Zhu, Y.; Liu, S.; Shi, X.; Han, D.; Liang, F. A Thermally Responsive Host–Guest Conductive Hydrogel with Self-Healing Properties. Mater. Chem. Front. 2018, 2, 2212–2219. DOI: 10.1039/C8QM00324F.
  • Shi, K.; Liu, Z.; Wei, Y. Y.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. Near-Infrared Light-Responsive Poly(N-Isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels with Ultrahigh Tensibility. ACS Appl. Mater. Interfaces 2015, 7, 27289–27298. DOI: 10.1021/acsami.5b08609.
  • Chen, J.; Teng, N.; Wen, Y. Facile Strategy of Fabricating Multifunctional Hydrogel with High Performance Based on Hybrid Graphene Oxide and Carbon Nanotube. J. Macromol. Sci. A 2019, 56, 513–521. DOI: 10.1080/10601325.2019.1586437.
  • Haraguchi, K.; Li, H.-J. Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels. Angew. Chem. Int. Ed. Engl. 2005, 44, 6500–6504. DOI: 10.1002/anie.200502004.
  • Chen, B.; Xie, H.; Wang, S.; Guo, Z.; Hu, Y.; Xie, H. UV Light-Tunable Fluorescent Inks and Polymer Hydrogel Films Based on Carbon Nanodots and Lanthanide for Enhancing anti-Counterfeiting. Luminescence 2019, 34, 437–443. DOI: 10.1002/bio.3636.
  • Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability. Adv. Mater. 2017, 29, 1700533. DOI: 10.1002/adma.201700533.
  • Ding, Q.; Xu, X.; Yue, Y.; Mei, C.; Huang, C.; Jiang, S.; Wu, Q.; Han, J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Appl. Mater. Interfaces 2018, 10, 27987–28002. DOI: 10.1021/acsami.8b09656.
  • Yu, Y.; Yuk, H.; Parada, G. A.; Wu, Y.; Liu, X.; Nabzdyk, C. S.; Youcef-Toumi, K.; Zang, J.; Zhao, X. Multifunctional “Hydrogel Skins” on Diverse Polymers with Arbitrary Shapes. Adv. Mater. 2019, 31, 1807101. DOI: 10.1002/adma.201807101.
  • Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial anti-Oxidant Electroactive Injectable Hydrogel as Self-Healing Wound Dressing with Hemostasis and Adhesiveness for Cutaneous Wound Healing. Biomaterials 2017, 122, 34–47. DOI: 10.1016/j.biomaterials.2017.01.011.
  • Das, S.; Chakraborty, P.; Ghosh, R.; Paul, S.; Mondal, S.; Panja, A.; Nandi, A. K. Folic Acid-Polyaniline Hybrid Hydrogel for Adsorption/Reduction of Chromium(VI) and Selective Adsorption of Anionic Dye from Water. ACS Sustainable Chem. Eng. 2017, 5, 9325–9337. DOI: 10.1021/acssuschemeng.7b02342.
  • Gong, K.; Hu, Q.; Xiao, Y.; Cheng, X.; Liu, H.; Wang, N.; Qiu, B.; Guo, Z. Triple Layered Core-Shell ZVI@Carbon@Polyaniline Composite Enhanced Electron Utilization in Cr(vi) Reduction. J. Mater. Chem. A 2018, 6, 11119–11128. DOI: 10.1039/C8TA03066A.
  • Cheng, Z.; Dong, Z.; Su, M.; Zhang, Y.; Wang, Z.; He, P. Synthesis of Cationic Polyacrylamide via Inverse Emulsion Polymerization Method for the Application in Water Treatment. J. Macromol. Sci. A 2019, 56, 76–85. DOI: 10.1080/10601325.2018.1547113.
  • Gao, Y.; Guo, R.; Feng, Y.; Zhang, L.; Wang, C.; Song, J.; Jiao, T.; Zhou, J.; Peng, Q. Self-Assembled Hydrogels Based on Poly-Cyclodextrin and Poly-Azobenzene Compounds and Applications for Highly Efficient Removal of Bisphenol a and Methylene Blue. ACS Omega. 2018, 3, 11663–11672. DOI: 10.1021/acsomega.8b01810.
  • Saikia, P.; Miah, A. T.; Das, P. P. Highly Efficient Catalytic Reductive Degradation of Various Organic Dyes by Au/CeO2-TiO2 Nano-Hybrid. J. Chem. Sci. 2017, 129, 81–93. DOI: 10.1007/s12039-016-1203-0.
  • Zhang, F.; Zhang, Y.; Zhang, G.; Yang, Z.; Dionysiou, D. D.; Zhu, A. Exceptional Synergistic Enhancement of the Photocatalytic Activity of SnS2 by Coupling with Polyaniline and N-Doped Reduced Graphene Oxide. Appl. Catal. B-Environ. 2018, 236, 53–63. DOI: 10.1016/j.apcatb.2018.05.002.
  • Mehrnia, M.; Bal, O.; Torun, M.; Şolpan, D. Synthesis of Poly (Acrylamide-co-Aconitic Acid) Adsorbents by Gamma-Irradiation, Characterization, Adsorption Studies and Application for Cationic Dyes Removal. J. Macromol. Sci. A 2019, 56, 63–68. DOI: 10.1080/10601325.2018.1543545.
  • Guo, H.; Jiao, T.; Zhang, Q.; Guo, W.; Peng, Q.; Yan, X. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Res. Lett. 2015, 10, 272. DOI: 10.1186/s11671-015-0931-2.
  • Depa, K.; Strachota, A.; Slouf, M.; Brus, J.; Cimrova, V. Synthesis of Conductive Doubly Filled Poly(N-Isopropylacrylamide)-polyaniline-SiO2 Hydrogels. Sensor. Actuat. B-Chem. 2017, 244, 616–634. DOI: 10.1016/j.snb.2016.12.121.
  • Guselnikova, O.; Postnikov, P.; Kalachyova, Y.; Kolska, Z.; Libansky, M.; Zima, J.; Svorcik, V.; Lyutakov, O. Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating. ChemNanoMat 2017, 3, 135–144. DOI: 10.1002/cnma.201600284.
  • Lu, T.; Zhang, S.; Qi, D.; Zhang, D.; Zhao, H. Thermosensitive Poly(N-Isopropylacrylamide)-Grafted Magnetic Nanoparticles for Efficient Treatment of Emulsified Oily Wastewater. J. Alloy. Compd. 2016, 688, 513–520. DOI: 10.1016/j.jallcom.2016.07.262.
  • Shi, Y.; Ha, H.; Al-Sudani, A.; Ellison, C. J.; Yu, G. Thermoplastic Elastomer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices. Adv. Mater. Weinheim. 2016, 28, 7921–7928. DOI: 10.1002/adma.201602239.
  • Demirci, S.; Silan, C.; Sahiner, N. Graphene Oxide Embedded P(AAm)/PANI Cryogel Polymer Composites for Sensor Application against Pesticide, Nitro Compound, and Organic Dyes. J. Macromol. Sci. A 2019, 56, 994–1003. DOI: 10.1080/10601325.2019.1612254.
  • Hayashi, K.; Matsuyama, T.; Ida, J. A Simple Magnetite Nanoparticle Immobilized Thermoresponsive Polymer Synthesis for Heavy Metal Ion Recovery. Powder. Technol. 2019, 355, 183–190. DOI: 10.1016/j.powtec.2019.07.007.
  • Yang, X.; Debeli, D. K.; Shan, G.; Pan, P. Selective Adsorption and High Recovery of La3+ Using Graphene Oxide/Poly (N-Isopropyl Acrylamide-Maleic Acid) Cryogel. Chem. Eng. J. 2020, 379, 122335. DOI: 10.1016/j.cej.2019.122335.
  • Gombotz, W. R.; Wee, S. F. Protein Release from Alginate Matrices. Adv. Drug. Deliver. Rev. 2012, 64, 194–205. DOI: 10.1016/j.addr.2012.09.007.
  • Wang, X.; Liang, Y.; An, W.; Hu, J.; Zhu, Y.; Cui, W. Removal of Chromium (VI) by a Self-Regenerating and Metal Free g-C3N4/Graphene Hydrogel System via the Synergy of Adsorption and Photo-Catalysis under Visible Light. Appl. Catal. B-Environ. 2017, 219, 53–62. DOI: 10.1016/j.apcatb.2017.07.008.
  • Chang, C.-I.; Chang, K.-H.; Shen, H.-H.; Hu, C.-C. A Unique Two-Step Hummers Method for Fabricating Low-Defect Graphene Oxide Nanoribbons through Exfoliating Multiwalled Carbon Nanotubes. J. Taiwan. Inst. Chem. E 2014, 45, 2762–2769. DOI: 10.1016/j.jtice.2014.05.030.
  • Zhu, J.; Wang, R.; Geng, R.; Zhang, X.; Wang, F.; Jiao, T.; Yang, J.; Bai, Z.; Peng, Q. A Facile Preparation Method for New Two-Component Supramolecular Hydrogels and Their Performances in Adsorption, Catalysis, and Stimuli-Response. RSC Adv. 2019, 9, 22551–22558. DOI: 10.1039/C9RA03827B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.