401
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Photo and redox dual-stimuli-responsive β-cyclodextrin-ferrocene supramolecules for drug delivery

, &
Pages 8-21 | Received 17 Jul 2020, Accepted 14 Aug 2020, Published online: 02 Sep 2020

References

  • Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. Stimuli-Responsive Nanomaterials for Biomedical Applications. J. Am. Chem. Soc. 2015, 137, 2140–2154. DOI: 10.1021/ja510147n.
  • Feng, A.; Yuan, J. Smart Nanocontainers: Progress on Novel Stimuli‐Responsive Polymer Vesicles. Macromol. Rapid Commun. 2014, 35, 767–779. DOI: 10.1002/marc.201300866.
  • Kim, H.; Kwak, G.; Kim, K.; Yoon, H. Y.; Kwon, I. C. Theranostic Designs of Biomaterials for Precision Medicine in Cancer Therapy. Biomaterials 2019, 213, 119207. DOI: 10.1016/j.biomaterials.2019.05.018.
  • Zhan, Y.; Gonçalves, M.; Yi, P.; Capelo, D.; Zhang, Y.; Rodrigues, J.; Liu, C.; Tomás, H.; Li, Y.; He, P. Thermo/Redox/pH-Triple Sensitive Poly(N-Isopropylacrylamide-Co-Acrylic Acid) Nanogels for Anticancer Drug Delivery. J. Mater. Chem. B 2015, 3, 4221–4230. DOI: 10.1039/c5tb00468c.
  • Wang, B.; Liu, L.; Liao, L. Light and Ferric Ion Responsive Fluorochromic Hydrogels with High Strength and Self-Healing Ability. Polym. Chem. 2019, 10, 6481–6488. DOI: 10.1039/C9PY01459D.
  • Shi, S.; Zhang, L.; Zhu, M.; Wan, G.; Li, C.; Zhang, J.; Wang, Y.; Wang, Y. Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. ACS Appl. Mater. Inter. 2018, 10, 29260–29272. DOI: 10.1021/acsami.8b08269.
  • Yang, C. A.; Chen, L.; Huang, H.; Ji, T.; Jiang, Y. X.; Chen, X.; Zhou, C. S. Controllable Fabrication of Novel pH-, Thermo-, and Light-Responsive Supramolecular Dendronized Copolymers with Dual Self-Assembly Behavior. Polym. Chem. 2018, 9, 3080–3087. DOI: 10.1039/C8PY00448J.
  • Chen, R.; Ma, Z.; Xiang, Z.; Xia, Y.; Shi, Q.; Wong, S. C.; Yin, J. Hydrogen Peroxide and Glutathione Dual Redox-Responsive Nanoparticles for Controlled DOX Release. Macromol. Biosci. 2020, 20, 1900331. DOI: 10.1002/mabi.201900331.
  • Wang, S.; Yao, C.; Ni, M.; Xu, Z.; Cheng, M.; Hu, X. Y.; Shen, Y. Z.; Lin, C.; Wang, L.; Jia, D. Thermo- and Oxidation-Responsive Supramolecular Vesicles Constructed from Self-Assembled Pillar[6]Arene-Ferrocene Based Amphiphilic Supramolecular Diblock Copolymers. Polym. Chem. 2017, 8, 682–688. DOI: 10.1039/C6PY01961G.
  • Gu, H.; Mu, S.; Qiu, G.; Liu, X.; Zhang, L.; Yuan, Y.; Astruc, D. Redox-Stimuli-Responsive Drug Delivery Systems with Supramolecular Ferrocenyl-Containing Polymers for Controlled Release. Coord. Chem. Rev. 2018, 364, 51–85. DOI: 10.1016/j.ccr.2018.03.013.
  • Wang, J.; Liu, L.; Chen, J.; Deng, M.; Feng, X.; Chen, L. Supramolecular Nanoplatforms via Cyclodextrin Host-Guest Recognition for Synergistic Gene-Photodynamic Therapy. Eur. Polym. J. 2019, 118, 222–230. DOI: 10.1016/j.eurpolymj.2019.04.051.
  • Noh, H.; Myung, S.; Kim, M. J.; Yang, S. K. Stimuli-Responsive Supramolecular Assemblies via Self-Assembly of Adamantine-Containing Block Copolymers. Polymer 2019, 175, 65–70. DOI: 10.1016/j.polymer.2019.05.011.
  • Mu, S.; Ling, Q.; Liu, X.; Ruiz, J.; Astruc, D.; Gu, H. Supramolecular Redox-Responsive Substrate Carrier Activity of a Ferrocenyl Janus Device. J. Inorg. Biochem. 2019, 193, 31–41. DOI: 10.1016/j.jinorgbio.2018.12.018.
  • Peng, L.; Wang, Z.; Feng, A.; Huo, M.; Fang, T.; Wang, K.; Wei, Y.; Yuan, J. Star Amphiphilic Supramolecular Copolymer Based on Host-Guest Interaction for Electrochemical Controlled Drug Delivery. Polymer 2016, 88, 112–122. DOI: 10.1016/j.polymer.2016.02.023.
  • Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. J. Am. Chem. Soc. 2010, 132, 9268–9270. DOI: 10.1021/ja1027502.
  • Zhang, J.; Ma, P. X. Host-Guest Interactions Mediated Nano-Assemblies Using Cyclodextrin-Containing Hydrophilic Polymers and Their Biomedical Applications. Nano Today. 2010, 5, 337–350. DOI: 10.1016/j.nantod.2010.06.011.
  • Seidi, F.; Shamsabadi, A. A.; Amini, M.; Shabanian, M.; Crespy, D. Functional Materials Generated by Allying Cyclodextrin-Based Supramolecular Chemistry with Living Polymerization. Polym. Chem. 2019, 10, 3674–3711. DOI: 10.1039/C9PY00495E.
  • Xu, Y.; Wang, L.; Li, Y. K.; Wang, C. Q. Oxidation and pH Responsive Nanoparticles Based on Ferrocene-Modified Chitosan Oligosaccharide for 5-Fluorouracil Delivery. Carbohydr. Polym. 2014, 114, 27–35. DOI: 10.1016/j.carbpol.2014.08.003.
  • Kang, Y.; Ju, X.; Ding, L. S.; Zhang, S.; Li, B. J. Reactive Oxygen Species and Glutathione Dual Redox-Responsive Supramolecular Assemblies with Controllable Release Capability. ACS Appl. Mater. Inter. 2017, 9, 4475–4484. DOI: 10.1021/acsami.6b14640.
  • Wang, Y.; Wang, H.; Chen, Y.; Liu, X.; Jin, Q.; Ji, J. pH and Hydrogen Peroxide Dual Responsive Supramolecular Prodrug System for Controlled Release of Bioactive Molecules. Colloids Surf. B Biointer. 2014, 121, 189–195. DOI: 10.1016/j.colsurfb.2014.06.024.
  • Kang, Y.; Ma, Y.; Zhang, S.; Ding, L. S.; Li, B. J. Dual-Stimuli-Responsive Nanoassemblies as Tunable Releasing Carriers. ACS Macro Lett. 2015, 4, 543–547. DOI: 10.1021/acsmacrolett.5b00171.
  • Zuo, C.; Dai, X.; Zhao, S.; Liu, X.; Ding, S.; Ma, L.; Liu, M.; Wei, H. Fabrication of Dual-Redox Responsive Supramolecular Copolymers Using a Reducible β-Cyclodextran-Ferrocene Double-Head Unit. ACS Macro Lett. 2016, 5, 873–878. DOI: 10.1021/acsmacrolett.6b00450.
  • Zhang, Y.; Yang, D.; Chen, H.; Lim, W. Q.; Phua, F. S. Z.; An, G.; Yang, P.; Zhao, Y. Reduction-Sensitive Fluorescence Enhanced Polymeric Prodrug Nanoparticles for Combinational Photothermal-Chemotherapy. Biomaterials 2018, 163, 14–24. DOI: 10.1016/j.biomaterials.2018.02.023.
  • Zhang, J.; Zuo, T.; Liang, X.; Xu, Y.; Yang, Y.; Fang, T.; Li, J.; Chen, D.; Shen, Q. Fenton-Reaction-Stimulative Nanoparticles Decorated with a Reactive-Oxygen-Species (ROS)-Responsive Molecular Switch for ROS Amplification and Triple Negative Breast Cancer Therapy. J. Mater. Chem. B 2019, 7, 7141–7151. DOI: 10.1039/c9tb01702j.
  • Hou, X.; Lin, H.; Zhou, X.; Cheng, Z.; Li, Y.; Liu, X.; Zhao, F.; Zhu, Y.; Zhang, P.; Chen, D. Novel Dual ROS-Sensitive and CD44 Receptor Targeting Nanomicelles Based on Oligomeric Hyaluronic Acid for the Efficient Therapy of Atherosclerosis. Carbohydr. Polym. 2020, 232, 115787. DOI: 10.1016/j.carbpol.2019.115787.
  • Na, Y.; Lee, J. S.; Woo, J.; Ahn, S.; Lee, E.; Choi, W. I.; Sung, D. Reactive Oxygen Species (ROS)-Responsive Ferrocene-Polymer-Based Nanoparticles for Controlled Release of Drugs. J Mater. Chem. B 2020, 8, 1906–1913. DOI: 10.1039/c9tb02533b.
  • Schumers, J. M.; Fustin, C. A.; Gohy, J. F. Light-Responsive Block Copolymers. Macromol. Rapid Commun. 2010, 31, 1588–1607. DOI: 10.1002/marc.201000108.
  • Katz, J. S.; Burdick, J. A. Light-Responsive Biomaterials: Development and Applications. Macromol. Biosci. 2010, 10, 339–348. DOI: 10.1002/mabi.200900297.
  • Zhao, Y. Light-Responsive Block Copolymer Micelles. Macromolecules 2012, 45, 3647–3657. DOI: 10.1021/ma300094t.
  • Gohy, J. F.; Zhao, Y. Photo-Responsive Block Copolymer Micelles: Design and Behavior. Chem. Soc. Rev. 2013, 42, 7117–7129. DOI: 10.1039/c3cs35469e.
  • Liu, G.; Dong, C. M. Photoresponsive Poly(s-(o-Nitrobenzyl)-L-Cysteine)-b-PEO from a L-Cysteine N-Carboxyanhydride Monomer: Synthesis, Self-Assembly, and Phototriggered Drug Release. Biomacromolecules 2012, 13, 1573–1583. DOI: 10.1021/bm300304t.
  • Peng, K. Y.; Wang, S. W.; Hua, M. Y.; Lee, R. S. Amphiphilic Photocleavable Block Copolymers Based on Monomethyl Poly(Ethylene Glycol) and Poly(4-Substituted-ε-Caprolactone): Synthesis, Characterization, and Cellular Uptake. RSC Adv. 2013, 3, 18453–18463. DOI: 10.1039/c3ra42763c.
  • Schumers, J. M.; Gohy, J. F.; Fustin, C. A. A Versatile Strategy for the Synthesis of Block Copolymers Bearing a Photocleavable Junction. Polym. Chem. 2010, 1, 161–163. DOI: 10.1039/B9PY00218A.
  • Jiang, J.; Tong, X.; Morris, D.; Zhao, Y. Toward Photocontrolled Release Using Light-Dissociable Block Copolymer Micelles. Macromolecules 2006, 39, 4633–4640. DOI: 10.1021/ma060142z.
  • Lv, C.; Wang, Z.; Wang, P.; Tang, X. Photodegradable Polyurethane Self-Assembled Nanoparticles for Photocontrollable Release. Langmuir 2012, 28, 9387–9394. DOI: 10.1021/la301534h.
  • Cabane, E.; Malinova, V.; Meier, W. Synthesis of Photocleavable Amphiphilic Block Copolymers: Toward the Design of Photosensitive Nanocarriers. Macromol. Chem. Phys. 2010, 211, 1847–1856. DOI: 10.1002/macp.201000151.
  • Baussanne, I.; Benito, J. M.; Mellet, C. O.; García Fernández, J. M.; Law, H.; Defaye, J. Synthesis and Comparative Lectin-Binding Affinity Mannosyl-Coated β-Cyclodextrin-Dendrimer Constructs. Chem. Commun. 2000, 16, 1489–1490. DOI: 10.1039/b003765f.
  • Hao, Y.; He, J.; Li, S.; Liu, J.; Zhang, M.; Ni, P. Synthesis of an Acid-Cleavable and Fluorescent Amphiphilic Block Copolymer as a Combined Delivery Vector of DNA and Doxorubicin. J. Mater. Chem. B 2014, 2, 4237–4249. DOI: 10.1039/c4tb00334a.
  • Lee, R. S.; Li, Y. C.; Wang, S. W. Synthesis and Characterization of Amphiphilic Photocleavable Polymers Based on Dextran and Substituted-ε-Caprolactone. Carbohydr. Polym. 2015, 117, 201–210. DOI: 10.1016/j.carbpol.2014.09.062.
  • Yang, X.; Jiang, X.; Yang, H.; Bian, L.; Chang, C.; Zhang, L. Biocompatible Cellulose-Based Supramolecular Nanoparticles Driven by Host-Guest Interactions for Drug Delivery. Carbohydr. Polym. 2020, 237, 116114. DOI: 10.1016/j.carbpol.2020.116114.
  • Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J. F. W.; Hennink, W. E. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharm. Res. 2010, 27, 2569–2589. DOI: 10.1007/s11095-010-0233-4.
  • Jin, Y.; Song, L.; Su, Y.; Zhu, L.; Pang, Y.; Qiu, F.; Tong, G.; Yan, D.; Zhu, B.; Zhu, X. Oxime Linkage: A Robust Tool for the Design of pH-Sensitive Polymeric Drug Carriers. Biomacromolecules 2011, 12, 3460–3468. DOI: 10.1021/bm200956u.
  • Liu, P.; Shi, B.; Yue, C.; Gao, G.; Li, P.; Yi, H.; Li, M.; Wang, B.; Ma, Y.; Cai, L. Dextran-Based Redox-Responsive Doxorubicin Prodrug Micelles for Overcoming Multidrug Resistance. Polym. Chem. 2013, 4, 5793–5799. DOI: 10.1039/c3py00830d.
  • Yan, J.; Ye, Z.; Chen, M.; Liu, Z.; Xiao, Y.; Zhang, Y.; Zhou, Y.; Tan, W.; Lang, M. Fine Tuning Micellar Core-Forming Block of Poly(Ethylene Glycol)-Block-Poly(ε-Caprolactone) Amphiphilic Copolymers Based on Chemical Modification for the Solubilization and Delivery of Doxorubicin. Biomacromolecules 2011, 12, 2562–2572. DOI: 10.1021/bm200375x.
  • Sagnella, S. M.; Duong, H.; MacMillan, A.; Boyer, C.; Whan, R.; McCarroll, J. A.; Davi, T. P.; Kavallaris, M. Dextran-Based Doxorubicin Nanocarriers with Improved Tumor Penetration. Biomacromolecules 2014, 15, 262–275. DOI: 10.1021/bm401526d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.