252
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Preparation and physicochemical properties of konjac glucomannan ibuprofen ester as a polysaccharide-drug conjugate

, , &
Pages 32-43 | Received 11 Jun 2020, Accepted 31 Aug 2020, Published online: 17 Sep 2020

References

  • Moore, R. A.; Derry, S.; Wiffen, P. J.; Straube, S.; Aldington, D. J. Overview Review: Comparative Efficacy of Oral Ibuprofen and Paracetamol (Acetaminophen) across Acute and Chronic Pain Conditions. Eur. J. Pain 2015, 19, 1213–1223. DOI: 10.1002/ejp.649.
  • Varrassi, G.; Pergolizzi, J. V.; Dowling, P.; Paladini, A. Ibuprofen Safety at the Golden Anniversary: Are All NSAIDs the Same? A Narrative Review. Adv. Ther. 2020, 37, 61–82. DOI: 10.1007/s12325-019-01144-9.
  • Carreras, N.; Acuña, V.; Martí, M.; Lis, M. J. Drug Release System of Ibuprofen in PCL-Microspheres. Colloid Polym. Sci. 2013, 291, 157–165. DOI: 10.1007/s00396-012-2768-x.
  • Yang, L.; Zhang, B.; Yi, J.; Liang, J.; Liu, Y.; Zhang, L.-M. Preparation, Characterization, and Properties of Amylose-Ibuprofen Inclusion Complexes. Starch/Stärke 2013, 65, 593–602. DOI: 10.1002/star.201200161.
  • Rubina, M. S.; Said‐Galiev, E. E.; Naumkin, A. V.; Shulenina, A. V.; Belyakova, O. A.; Vasil'kov, A. Y. Preparation and Characterization of Biomedical Collagen–Chitosan Scaffolds with Entrapped Ibuprofen and Silver Nanoparticles. Polym. Eng. Sci. 2019, 59, 2479–2487. DOI: 10.1002/pen.25122.
  • Garcia-Gonzalez, C. A.; Jin, M.; Gerth, J.; Alvarez-Lorenzo, C.; Smirnova, I. Polysaccharide-Based Aerogel Microspheres for Oral Drug Delivery. Carbohydr. Polym. 2015, 117, 797–806. DOI: 10.1016/j.carbpol.2014.10.045.
  • El-Newehy, M. H.; El-Naggar, M. E.; Alotaiby, S.; El-Hamshary, H.; Moydeen, M.; Al-Deyab, S. Preparation of Biocompatible System Based on Electrospun CMC/PVA Nanofibers as Controlled Release Carrier of Diclofenac Sodium. J. Macromol. Sci., Part A: Pure Appl. Chem. 2016, 53, 566–573. DOI: 10.1080/10601325.2016.1201752.
  • Zhang, X.; Li, D.; Huang, J.; Ou, K.; Yan, B.; Shi, F.; Zhang, J.; Zhang, J.; Pang, J.; Kang, Y.; Wu, J. Screening of pH-Responsive Long-Circulating Polysaccharide-Drug Conjugate Nanocarriers for Antitumor Applications. J. Mater. Chem. B 2019, 7, 251–264. DOI: 10.1039/c8tb02474j.
  • Birajdar, R. P.; Patil, S. B.; Alange, V. V.; Kulkarni, R. V. Electro-Responsive Polyacrylamide-Grafted-Gum Ghatti Copolymer for Transdermal Drug Delivery Application. J. Macromol. Sci., Part A: Pure Appl. Chem. 2019, 56, 306–315. DOI: 10.1080/10601325.2019.1574539.
  • Daus, S.; Heinze, T. Xylan-Based Nanoparticles: Prodrugs for Ibuprofen Release. Macromol. Biosci. 2010, 10, 211–220. DOI: 10.1002/mabi.200900201.
  • Sun, H.; Zhang, L.; Xia, W.; Chen, L.; Xu, Z.; Zhang, W. Fabrication of Graphene Oxide-Modified Chitosan for Controlled Release of Dexamethasone Phosphate. Appl. Phys. A 2016, 122, 632. DOI: 10.1007/s00339-016-0029-4.
  • Behera, S. S.; Ray, R. C. Konjac Glucomannan, a Promising Polysaccharide of Amorphophallus Konjac K. Koch in Health Care. Int. J. Biol. Macromol. 2016, 92, 942–956. DOI: 10.1016/j.ijbiomac.2016.07.098.
  • Luan, J.; Wu, K.; Li, C.; Liu, J.; Ni, X.; Xiao, M.; Xu, Y.; Kuang, Y.; Jiang, F. pH-Sensitive Drug Delivery System Based on Hydrophobic Modified Konjac Glucomannan. Carbohydr. Polym. 2017, 171, 9–17. DOI: 10.1016/j.carbpol.2017.04.094.
  • Zhang, H.; Cui, S.; Lv, H.; Pei, X.; Gao, M.; Chen, S.; Hu, J.; Zhou, Y.; Liu, Y. A Crosslinking Strategy to Make Neutral Polysaccharide Nanofibers Robust and Biocompatible: With Konjac Glucomannan as an Example. Carbohydr. Polym. 2019, 215, 130–136. DOI: 10.1016/j.carbpol.2019.03.075.
  • Wu, C.; Li, Y.; Du, Y.; Wang, L.; Tong, C.; Hu, Y.; Pang, J.; Yan, Z. Preparation and Characterization of Konjac Glucomannan-Based Bionanocomposite Film for Active Food Packaging. Food Hydrocoll. 2019, 89, 682–690. DOI: 10.1016/j.foodhyd.2018.11.001.
  • Yuan, Y.; Wang, L.; Mu, R. J.; Gong, J.; Wang, Y.; Li, Y.; Ma, J.; Pang, J.; Wu, C. Effects of Konjac Glucomannan on the Structure, Properties, and Drug Release Characteristics of Agarose Hydrogels. Carbohydr. Polym. 2018, 190, 196–203. DOI: 10.1016/j.carbpol.2018.02.049.
  • Yuan, Y.; Xu, X.; Gong, J.; Mu, R.; Li, Y.; Wu, C.; Pang, J. Fabrication of Chitosan-Coated Konjac Glucomannan/Sodium Alginate/Graphene Oxide Microspheres with Enhanced Colon-Targeted Delivery. Int. J. Biol. Macromol. 2019, 131, 209–217. DOI: 10.1016/j.ijbiomac.2019.03.061.
  • Ni, Y.; Lin, W.; Mu, R.-J.; Wu, C.; Wang, L.; Wu, D.; Chen, S.; Pang, J. Robust Microfluidic Construction of Hybrid Microfibers Based on Konjac Glucomannan and Their Drug Release Performance. RSC Adv. 2018, 8, 26432–26439. DOI: 10.1039/C8RA05600E.
  • XiaoYan, L.; JiuXiang, P.; LinQiu, Y. Lipase-Catalyzed Esterification of Konjac Glucomannan in Isooctane. Environ. Prog. Sustainable Energy 2016, 35, 1149–1155. DOI: 10.1002/ep.12330.
  • Zhang, C.; Han, B.; Yao, X.; Pang, L.; Luo, X. Synthesis of Konjac Glucomannan Phthalate as a New Biosorbent for Copper Ion Removal. J. Polym. Res. 2012, 20, 34. DOI: 10.1007/s10965-012-0034-z.
  • Dinu, M. V.; Cocarta, A. I.; Dragan, E. S. Synthesis, Characterization and Drug Release Properties of 3D Chitosan/Clinoptilolite Biocomposite Cryogels. Carbohydr. Polym. 2016, 153, 203–211. DOI: 10.1016/j.carbpol.2016.07.111.
  • Lefnaoui, S.; Moulai-Mostefa, N. Synthesis and Evaluation of the Structural and Physicochemical Properties of Carboxymethyl Pregelatinized Starch as a Pharmaceutical Excipient. Saudi Pharm. J. 2015, 23, 698–711. DOI: 10.1016/j.jsps.2015.01.021.
  • Zuniga, A.; Forte Neran, R.; Albertengo, L.; Rodriguez, M. S. Synthesis, Characterization and Evaluation of Reactional Parameters on Substitution Degree of N-hexyl-N-Methylene Phosphonic Chitosan. Carbohydr. Polym. 2018, 202, 1–10. DOI: 10.1016/j.carbpol.2018.08.126.
  • Stojanović, Ž.; Jeremić, K.; Jovanović, S. Synthesis of Carboxymethyl Starch. Starch/Stärke. 2000, 52, 413–419. DOI: 10.1002/1521-379X(200011)52:11 < 413::AID-STAR413 > 3.0.CO;2-B.
  • Namur, J.; Wassef, M.; Pelage, J. P.; Lewis, A.; Manfait, M.; Laurent, A. Infrared Microspectroscopy Analysis of Ibuprofen Release from Drug Eluting Beads in Uterine Tissue. J. Control. Release 2009, 135, 198–202. DOI: 10.1016/j.jconrel.2008.12.017.
  • Mauri, E.; Rossetti, A.; Mozetic, P.; Schiavon, C.; Sacchetti, A.; Rainer, A.; Rossi, F. Ester Coupling of Ibuprofen in Hydrogel Matrix: A Facile One-Step Strategy for Controlled anti-Inflammatory Drug Release. Eur. J. Pharm. Biopharm. 2020, 146, 143–149. DOI: 10.1016/j.ejpb.2019.11.002.
  • Wang, L.; Mu, R.-J.; Li, Y.; Lin, L.; Lin, Z.; Pang, J. Characterization and Antibacterial Activity Evaluation of Curcumin Loaded Konjac Glucomannan and Zein Nanofibril Films. LWT-Food Sci. Technol. 2019, 113, 108293. DOI: 10.1016/j.lwt.2019.108293.
  • Wang, K.; Gao, S.; Shen, C.; Liu, J.; Li, S.; Chen, J.; Ren, X.; Yuan, Y. Preparation of Cationic Konjac Glucomannan in NaOH/Urea Aqueous Solution. Carbohydr. Polym. 2018, 181, 736–743. DOI: 10.1016/j.carbpol.2017.11.084.
  • Aydin, O.; Aydin, B.; Tezcaner, A.; Keskin, D. Study on Physiochemical Structure Andin Vitrorelease Behaviors of Doxycycline-Loaded PCL Microspheres. J. Appl. Polym. Sci. 2015, 132, n/a–n/a. n/a-n/a. DOI: 10.1002/app.41768.
  • Zhang, L.; Cheng, H.; Zheng, C.; Dong, F.; Man, S.; Dai, Y.; Yu, P. Structural and Release Properties of Amylose Inclusion Complexes with Ibuprofen. J. Drug Delivery. Sci. Technol. 2016, 31, 101–107. DOI: 10.1016/j.jddst.2015.12.006.
  • Wang, L.; Mu, R. J.; Lin, L.; Chen, X.; Lin, S.; Ye, Q.; Pang, J. Bioinspired Aerogel Based on Konjac Glucomannan and Functionalized Carbon Nanotube for Controlled Drug Release. Int. J. Biol. Macromol. 2019, 133, 693–701. DOI: 10.1016/j.ijbiomac.2019.04.148.
  • Ni, Y.; Lin, W.; Mu, R.; Wu, C.; Lin, Z.; Chen, S.; Pang, J. Facile Fabrication of Novel Konjac Glucomannan Films with Antibacterial Properties via Microfluidic Spinning Strategy. Carbohydr. Polym. 2019, 208, 469–476. DOI: 10.1016/j.carbpol.2018.12.102.
  • Terrett, O. M.; Lyczakowski, J. J.; Yu, L.; Iuga, D.; Franks, W. T.; Brown, S. P.; Dupree, R.; Dupree, P. Molecular Architecture of Softwood Revealed by Solid-State NMR. Nat. Commun. 2019, 10, 4978DOI: 10.1038/s41467-019-12979-9.
  • Tian, D.; Zhou, Y.; An, K.; Kang, H. Preparation and Flocculation Properties of Biodegradable Konjac Glucomannan-Grafted Poly(Trimethyl Allyl Ammonium Chloride). Polym. Bull. 2020, 77, 1847–1868. DOI: 10.1007/s00289-019-02836-6.
  • Carignani, E.; Borsacchi, S.; Geppi, M. Detailed Characterization of the Dynamics of Ibuprofen in the Solid State by a Multi-Technique NMR Approach. ChemPhysChem 2011, 12, 974–981. DOI: 10.1002/cphc.201000946.
  • Wang, J.; Chen, X.; Zhang, C.; Akbar, A. R.; Shi, Z.; Yang, Q.; Xiong, C. Transparent Konjac Glucomannan/Cellulose Nanofibril Composite Films with Improved Mechanical Properties and Thermal Stability. Cellulose 2019, 26, 3155–3165. DOI: 10.1007/s10570-019-02302-6.
  • Wang, Y.; Chen, Y.; Zhou, Y.; Nirasawa, S.; Tatsumi, E.; Li, X.; Cheng, Y. Effects of Konjac Glucomannan on heat-induced changes of wheat gluten structure . Food Chem. 2017, 229, 409–416. DOI: 10.1016/j.foodchem.2017.02.056.
  • Xiao, M.; Wan, L.; Corke, H.; Yan, W.; Ni, X.; Fang, Y.; Jiang, F. Characterization of Konjac Glucomannan-Ethyl Cellulose Film Formation via Microscopy. Int. J. Biol. Macromol. 2016, 85, 434–441. DOI: 10.1016/j.ijbiomac.2016.01.016.
  • Meng, F. B.; Zhang, Q.; Li, Y. C.; Li, J. J.; Liu, D. Y.; Peng, L. X. Konjac Glucomannan Octenyl Succinate as a Novel Encapsulation Wall Material to Improve Curcumin Stability and Bioavailability. Carbohydr. Polym. 2020, 238, 116193. DOI: 10.1016/j.carbpol.2020.116193.
  • Xu, F.; Sun, L.-X.; Tan, Z.-C.; Liang, J.-G.; Li, R.-L. Thermodynamic Study of Ibuprofen by Adiabatic Calorimetry and Thermal Analysis. Thermochim. Acta 2004, 412, 33–57. DOI: 10.1016/j.tca.2003.08.021.
  • Gomes Neto, R. J.; Genevro, G. M.; Paulo, L. A.; Lopes, P. S.; de Moraes, M. A.; Beppu, M. M. Characterization and in Vitro Evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing . Carbohydr. Polym. 2019, 212, 59–66. DOI: 10.1016/j.carbpol.2019.02.017.
  • Li, C.; Wu, K.; Su, Y.; Riffat, S. B.; Ni, X.; Jiang, F. Effect of Drying Temperature on Structural and Thermomechanical Properties of Konjac Glucomannan-Zein Blend Films. Int. J. Biol. Macromol. 2019, 138, 135–143. DOI: 10.1016/j.ijbiomac.2019.07.007.
  • Kim, D.; Amos, R.; Gauthier, M.; Duhamel, J. Applications of Pyrene Fluorescence to the Characterization of Hydrophobically Modified Starch Nanoparticles. Langmuir 2018, 34, 8611–8621. DOI: 10.1021/acs.langmuir.8b01591.
  • Balshaw, H. M.; Douglas, P.; Davies, M. L.; Doerr, S. H. Pyrene and Nile Red Fluorescence Probes for in-Situ Study of Polarity and Viscosity of Soil Organic Coatings Implicated in Soil Water Repellency. Eur. J. Soil Sci. 2020, 71, 868–879. DOI: 10.1111/ejss.12925.
  • Dhingra, D.; Bhawna; Pandey, A.; Pandey, S. Pyrene Fluorescence to Probe a Lithium Chloride-Added (Choline Chloride + Urea) Deep Eutectic Solvent. J. Phys. Chem. B 2019, 123, 3103–3111. DOI: 10.1021/acs.jpcb.9b01193.
  • Idayu Zahid, N.; Abou-Zied, O. K.; Hashim, R.; Heidelberg, T. Characterization of the Head Group and the Hydrophobic Regions of a Glycolipid Lyotropic Hexagonal Phase Using Fluorescent Probes. J. Phys. Chem. C 2011, 115, 19805–19810. DOI: 10.1021/jp2060393.
  • Hassani, L. N.; Hendra, F.; Bouchemal, K. Auto-Associative Amphiphilic Polysaccharides as Drug Delivery Systems. Drug Discov. Today 2012, 17, 608–614. DOI: 10.1016/j.drudis.2012.01.016.
  • Wang, C.; Xin, Y.; Qiu, L.; Yang, X. Facile Preparation and Properties of Ionic-Bonded Hydrophobically Associating Anionic Sesbania Gum. J. Polym. Environ. 2019, 27, 767–773. DOI: 10.1007/s10924-019-01390-6.
  • Agostini, A.; Capasso Palmiero, U.; Barbieri, S. D. A.; Lupi, M.; Moscatelli, D. Synthesis and Characterization of pH-Sensitive Drinkable Nanoparticles for Oral Delivery of Ibuprofen. Nanotechnology 2018, 29, 225604. DOI: 10.1088/1361-6528/aab536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.