427
Views
11
CrossRef citations to date
0
Altmetric
Research Article

HA particles as resourceful cancer, steroidal and antibiotic drug delivery device with sustainable and multiple drug release capability

, , , &
Pages 145-155 | Received 25 Aug 2020, Accepted 24 Sep 2020, Published online: 12 Oct 2020

References

  • Zhu, J.; Tang, X.; Jia, Y.; Ho, C. T.; Huang, Q. Applications and Delivery Mechanisms of Hyaluronic Acid Used for Topical/Transdermal Delivery - A Review. Int. J. Pharm. 2020, 578, 119127. DOI: 10.1016/j.ijpharm.2020.119127.
  • Fakhari, A.; Berkland, C. Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler and in Osteoarthritis Treatment. Acta Biomater. 2013, 9, 7081–7092. DOI: 10.1016/j.actbio.2013.03.005.
  • Sadick, N. S.; Karcher, C.; Palmisano, L. Cosmetic Dermatology of the Aging Face. Clin. Dermatol. 2009, 27, S3–S12. DOI: 10.1016/j.clindermatol.2008.12.003.
  • Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic Acid (Hyaluronan): a Review. Veterinarni. Medicina. 2008, 53, 397–411. DOI: 10.17221/1930-VETMED.
  • De Oliveira, J. D.; Carvalho, L. S.; Gomes, A. M. V.; Queiroz, L. R.; Magalhães, B. S.; Parachin, N. S. Genetic Basis for Hyper Production of Hyaluronic Acid in Natural and Engineered Microorganisms. Microb. Cell Fact. 2016, 15, 119. DOI: 10.1186/s12934-016-0517-4.
  • Tripodo, G.; Trapani, A.; Torre, M. L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic Acid and Its Derivatives in Drug Delivery and Imaging: Recent Advances and Challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400–416. DOI: 10.1016/j.ejpb.2015.03.032.
  • Zhang, Z.; Suner, S. S.; Blake, D. A.; Ayyala, R. S.; Sahiner, N. Antimicrobial Activity and Biocompatibility of Slow-Release Hyaluronic Acid-Antibiotic Conjugated Particles. Int. J. Pharm. 2020, 576, 119024. DOI: 10.1016/j.ijpharm.2020.119024.
  • Zhong, L.; Liu, Y.; Xu, L.; Li, Q.; Zhao, D.; Li, Z.; Zhang, H.; Zhang, H.; Kan, Q.; Sun, J.; He, Z. Exploring the Relationship of Hyaluronic Acid Molecular Weight and Active Targeting Efficiency for Designing Hyaluronic Acid-Modified Nanoparticles. Asian J. Pharm. Sci. 2019, 14, 521–530. DOI: 10.1016/j.ajps.2018.11.002.
  • Wickens, J. M.; Alsaab, H. O.; Kesharwani, P.; Bhise, K.; Amin, M. C. I. M.; Tekade, R. K.; Gupta, U.; Iyer, A. K. Recent Advances in Hyaluronic Acid-Decorated Nanocarriers for Targeted Cancer Therapy. Drug Discov. Today 2017, 22, 665–680. DOI: 10.1016/j.drudis.2016.12.009.
  • Rayahin, J. E.; Buhrman, J. S.; Zhang, Y.; Koh, T. J.; Gemeinhart, R. A. High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng. 2015, 1, 481–493. DOI: 10.1021/acsbiomaterials.5b00181.
  • Falcone, S. J.; Palmeri, D.; Berg, R. A. Biomedical Applications of Hyaluronic Acid. In Polysaccharides for Drug Delivery and Pharmaceutical Applications; Oxford University Press: Oxford, 2009; Vol. 934, pp 155–174. DOI: 10.1021/bk-2006-0934.ch008.
  • Huerta-Ángeles, G.; Nešporová, K.; Ambrožová, G.; Kubala, L.; Velebný, V. An Effective Translation: The Development of Hyaluronan-Based Medical Products from the Physicochemical, and Preclinical Aspects. Front. Bioeng. Biotechnol. 2018, 6, 1–13. DOI: 10.3389/fbioe.2018.00062.
  • John, H. E.; Price, R. Perspectives in the Selection of Hyaluronic Acid Fillers for Facial Wrinkles and Aging Skin. Patient Prefer. Adherence 2009, 3, 225–230. DOI: 10.2147/PPA.S3183.
  • Mero, A.; Campisi, M. Hyaluronic Acid Bioconjugates for the Delivery of Bioactive Molecules. Polymers (Basel) 2014, 6, 346–369. DOI: 10.3390/polym6020346.
  • Sahiner, N.; Sagbas, S.; Sahiner, M.; Ayyala, R. S. Polyethyleneimine Modified Poly(Hyaluronic Acid) Particles with Controllable Antimicrobial and Anticancer Effects. Carbohydr. Polym. 2017, 159, 29–38. DOI: 10.1016/j.carbpol.2016.12.024.
  • Jeong, G.-W.; Jeong, Y.-I.; Nah, J.-W. Triggered Doxorubicin Release Using Redox-Sensitive Hyaluronic Acid-g-Stearic Acid Micelles for Targeted Cancer Therapy. Carbohydr. Polym. 2019, 209, 161–171. DOI: 10.1016/j.carbpol.2019.01.018.
  • Collins, M. N.; Birkinshaw, C. Hyaluronic Acid Based Scaffolds for Tissue Engineering-A Review. Carbohydr. Polym. 2013, 92, 1262–1279. DOI: 10.1016/j.carbpol.2012.10.028.
  • Miyazaki, M.; Yuba, E.; Harada, A.; Kono, K. Hyaluronic Acid Derivative-Modified Liposomes as pH-Sensitive Anticancer Drug Delivery System. J. Control Release 2015, 213, e73–e74. DOI: 10.1016/j.jconrel.2015.05.122.
  • Li, Y.; Tian, H.; Chen, X. Hyaluronic Acid Based Injectable Hydrogels for Localized and Sustained Gene Delivery. J. Control Release 2015, 213, e140–e141. DOI: 10.1016/j.jconrel.2015.05.237.
  • Huang, G.; Chen, J. Preparation and Applications of Hyaluronic Acid and Its Derivatives. Int. J. Biol. Macromol. 2019, 125, 478–484. DOI: 10.1016/j.ijbiomac.2018.12.074.
  • Huang, G.; Huang, H. Hyaluronic Acid-Based Biopharmaceutical Delivery and Tumor-Targeted Drug Delivery System. J. Control Release 2018, 278, 122–126. DOI: 10.1016/j.jconrel.2018.04.015.
  • Huang, G.; Huang, H. Application of Hyaluronic Acid as Carriers in Drug Delivery. Drug Deliv. 2018, 25, 766–772. DOI: 10.1080/10717544.2018.1450910.
  • Tang, M.; Svirskis, D.; Leung, E.; Kanamala, M.; Wang, H.; Wu, Z. Can Intracellular Drug Delivery Using Hyaluronic Acid Functionalised pH-Sensitive Liposomes Overcome Gemcitabine Resistance in Pancreatic Cancer? J. Control Release 2019, 305, 89–100. DOI: 10.1016/j.jconrel.2019.05.018.
  • Montgomery, N.; Hill, A.; McFarlane, S.; Neisen, J.; O'Grady, A.; Conlon, S.; Jirstrom, K.; Kay, E. W.; Waugh, D. J. J. CD44 Enhances Invasion of Basal-like Breast Cancer Cells by Upregulating Serine Protease and Collagen-Degrading Enzymatic Expression and Activity. Breast Cancer Res. 2012, 14, R84. DOI: 10.1186/bcr3199.
  • Kumar, R.; Singh, M.; Meena, J.; Singhvi, P.; Thiyagarajan, D.; Saneja, A.; Panda, A. K. Hyaluronic Acid - Dihydroartemisinin Conjugate: Synthesis, Characterization and in Vitro Evaluation in Lung Cancer Cells. Int. J. Biol. Macromol. 2019, 133, 495–502. DOI: 10.1016/j.ijbiomac.2019.04.124.
  • Klarmann, G. J.; Hurt, E. M.; Mathews, L. A.; Zhang, X.; Duhagon, M. A.; Mistree, T.; Thomas, S. B.; Farrar, W. L. Invasive Prostate Cancer Cells Are Tumor Initiating Cells That Have a Stem Cell-Like Genomic Signature. Clin. Exp. Metastasis. 2009, 26, 433–446. DOI: 10.1007/s10585-009-9242-2.
  • Jiang, W.; Zhang, Y.; Kane, K. T.; Collins, M. A.; Simeone, D. M.; di Magliano, M. P.; Nguyen, K. T. CD44 Regulates Pancreatic Cancer Invasion through MT1-MMP. Mol. Cancer Res. 2015, 13, 9–15. DOI: 10.1158/1541-7786.mcr-14-0076.
  • Saneja, A.; Arora, D.; Kumar, R.; Dubey, R. D.; Panda, A. K.; Gupta, P. N. CD44 Targeted PLGA Nanomedicines for Cancer Chemotherapy. Eur. J. Pharm. Sci. 2018, 121, 47–58. DOI: 10.1016/j.ejps.2018.05.012.
  • Vulic, K.; Shoichet, M. S. Tunable Growth Factor Delivery from Injectable Hydrogels for Tissue Engineering. J. Am. Chem. Soc. 2012, 134, 882–885. DOI: 10.1021/ja210638x.
  • Kita, K.; Dittrich, C. Drug Delivery Vehicles with Improved Encapsulation Efficiency: Taking Advantage of Specific Drug-Carrier Interactions. Expert Opin. Drug Deliv. 2011, 8, 329–342. DOI: 10.1517/17425247.2011.553216.
  • Larson, N.; Ghandehari, H. Polymeric Conjugates for Drug Delivery. Chem. Mater. 2012, 24, 840–853. DOI: 10.1021/cm2031569.
  • Kang, H.; Guan, L.; An, K.; Tian, D. Preparation and Physicochemical Properties of Konjac Glucomannan Ibuprofen Ester as a Polysaccharide-Drug Conjugate. J. Macromol. Sci. A 2020, 1–12. DOI: 10.1080/10601325.2020.1821709.
  • Ozbilenler, C.; Altundag, E. M.; Gazi, M. Synthesis of Quercetin-Encapculated Alginate Beads with Their Antioxidant and Release Kinetic Studies. J. Macromol. Sci. A 2020, 1–10. DOI: 10.1080/10601325.2020.1817756.
  • Abbasian, M.; Hasanzadeh, P.; Mahmoodzadeh, F.; Salehi, R. Novel Cationic Cellulose-Based Nanocomposites for Targeted Delivery of Methotrexate to Breast Cancer Cells. J. Macromol. Sci. A 2020, 57, 99–115. DOI: 10.1080/10601325.2019.1673174.
  • Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High Drug-Loading Nanomedicines: Progress, Current Status, and Prospects. Int. J. Nanomed. 2017, 12, 4085–4109. DOI: 10.2147/IJN.S132780.
  • Li, Q.; Li, X.; Zhao, C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front. Bioeng. Biotechnol. 2020, 8, 437. DOI: 10.3389/fbioe.2020.00437.
  • Levine, R. M.; Kokkoli, E. Dual-Ligand α5β1 and α6β4 Integrin Targeting Enhances Gene Delivery and Selectivity to Cancer Cells. J. Control. Release 2017, 251, 24–36. DOI: 10.1016/j.jconrel.2017.02.017.
  • Shi, S.; Zhou, M.; Li, X.; Hu, M.; Li, C.; Li, M.; Sheng, F.; Li, Z.; Wu, G.; Luo, M.; et al. Synergistic Active Targeting of Dually Integrin αvβ3/CD44-Targeted Nanoparticles to B16F10 Tumors Located at Different Sites of Mouse Bodies. J. Control Release 2016, 235, 1–13. DOI: 10.1016/j.jconrel.2016.05.050.
  • Kluza, E.; van der Schaft, D. W. J.; Hautvast, P. A. I.; Mulder, W. J. M.; Mayo, K. H.; Griffioen, A. W.; Strijkers, G. J.; Nicolay, K. Synergistic Targeting of Alphavbeta3 Integrin and Galectin-1 with Heteromultivalent Paramagnetic Liposomes for Combined MR Imaging and Treatment of Angiogenesis. Nano Lett. 2010, 10, 52–58. DOI: 10.1021/nl902659g.
  • Hu, K.; Zhou, H.; Liu, Y.; Liu, Z.; Liu, J.; Tang, J.; Li, J.; Zhang, J.; Sheng, W.; Zhao, Y.; et al. Hyaluronic Acid Functional Amphipathic and Redox-Responsive Polymer Particles for the Co-Delivery of Doxorubicin and Cyclopamine to Eradicate Breast Cancer Cells and Cancer Stem Cells. Nanoscale 2015, 7, 8607–8618. DOI: 10.1039/C5NR01084E.
  • Song, L.; Pan, Z.; Zhang, H.; Li, Y.; Zhang, Y.; Lin, J.; Su, G.; Ye, S.; Xie, L.; Li, Y.; Hou, Z. Dually Folate/CD44 Receptor-Targeted Self-Assembled Hyaluronic Acid Nanoparticles for Dual-Drug Delivery and Combination Cancer Therapy. J. Mater. Chem. B. 2017, 5, 6835–6846. DOI: 10.1039/C7TB01548H.
  • Jia, X.; Han, Y.; Pei, M.; Zhao, X.; Tian, K.; Zhou, T.; Liu, P. Multi-Functionalized Hyaluronic Acid Nanogels Crosslinked with Carbon Dots as Dual Receptor-Mediated Targeting Tumor Theranostics. Carbohydr. Polym. 2016, 152, 391–397. DOI: 10.1016/j.carbpol.2016.06.109.
  • Sun, F.; Zhang, P.; Liu, Y.; Lu, C.; Qiu, Y.; Mu, H.; Duan, J. A Photo-Controlled Hyaluronan-Based Drug Delivery Nanosystem for Cancer Therapy. Carbohydr. Polym. 2019, 206, 309–318. DOI: 10.1016/j.carbpol.2018.11.005.
  • Sahiner, N.; Silan, C.; Sagbas, S.; Ilgin, P.; Butun, S.; Erdugan, H.; Ayyala, R. S. Porous and Modified HA Particles as Potential Drug Delivery Systems. Microporous Mesoporous Mater 2012, 155, 124–130. DOI: 10.1016/j.micromeso.2012.01.027.
  • Li, Y.; Zhang, H.; Chen, Y.; Ma, J.; Lin, J.; Zhang, Y.; Fan, Z.; Su, G.; Xie, L.; Zhu, X.; Hou, Z. Integration of Phospholipid-Hyaluronic Acid-Methotrexate Nanocarrier Assembly and Amphiphilic Drug-Drug Conjugate for Synergistic Targeted Delivery and Combinational Tumor Therapy. Biomater. Sci. 2018, 6, 1818–1833. DOI: 10.1039/C8BM00009C.
  • Kottra, C. J. Infection in the Compromised Host–an Overview. Heart Lung 1983, 12, 10–14.
  • Calandra, T. Spectrum and Treatment of Bacterial Infections in Cancer Patients with Granulocytopenia. In Supportive Care in Cancer Patients II. Recent Results in Cancer Reserach; H.J. Senn, A. Glaus, Eds.; Springer: Berlin, Heidelberg, 1991; Vol. 121, pp 329–336. DOI: 10.1007/978-3-642-84138-5_39.
  • Pizzo, P. A.; Hathorn, J. W.; Hiemenz, J.; Browne, M.; Commers, J.; Cotton, D.; Gress, J.; Longo, D.; Marshall, D.; McKnight, J.; et al. A Randomized Trial Comparing Ceftazidime Alone with Combination Antibiotic Therapy in Cancer Patients with Fever and Neutropenia. N. Engl. J. Med. 1986, 315, 552–558. DOI: 10.1056/NEJM198608283150905.
  • Coussens, L. M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. DOI: 10.1038/nature01322.
  • Brown, A. E. Neutropenia, Fever, and Infection. Am. J. Med. 1984, 76, 421–428. DOI: 10.1016/0002-9343(84)90661-2.
  • Sahiner, N.; Suner, S. S.; Ayyala, R. S. Mesoporous, Degradable Hyaluronic Acid Microparticles for Sustainable Drug Delivery Application. Colloids Surf. B Biointerfaces 2019, 177, 284–293. DOI: 10.1016/j.colsurfb.2019.02.015.
  • Suner, S. S.; Sahiner, M.; Sengel, S. B.; Rees, D. J.; Reed, W. F.; Sahiner, N. Responsive Biopolymer-Based Microgels/Nanogels for Drug Delivery Applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Woodhead Publishing: UK, 2018; pp 453–500. DOI: 10.1016/B978-0-08-101997-9.00021-7.
  • Sahiner, N.; Sagbas, S.; Aktas, N. Preparation of Macro-, Micro-, and Nano-Sized Poly(Tannic Acid) Particles with Controllable Degradability and Multiple Biomedical Uses. Polym. Degrad. Stab. 2016, 129, 96–105. DOI: 10.1016/j.polymdegradstab.2016.04.010.
  • Sahiner, N.; Sagbas, S.; Aktas, N.; Silan, C. Inherently Antioxidant and Antimicrobial Tannic Acid Release from Poly(Tannic Acid) Nanoparticles with Controllable Degradability. Colloids Surf. B Biointerfaces 2016, 142, 334–343. DOI: 10.1016/j.colsurfb.2016.03.006.
  • Bae, Y. H.; Park, K. Targeted Drug Delivery to Tumors: Myths, Reality and Possibility. J. Control Release 2011, 153, 198–205. DOI: 10.1016/j.jconrel.2011.06.001.
  • Costerton, J. W.; Irvin, R. T.; Cheng, K. J.; Sutherland, I. W. The Role of Bacterial Surface Structures in Pathogenesis. Crit. Rev. Microbiol. 1981, 8, 303–338. DOI: 10.3109/10408418109085082.
  • Reeff, J.; Gaignaux, A.; Goole, J.; De Vriese, C.; Amighi, K. New Sustained-Release Intraarticular Gel Formulations Based on Monolein for Local Treatment of Arthritic Diseases. Drug Dev. Ind. Pharm. 2013, 39, 1731–1741. DOI: 10.3109/03639045.2012.730529.
  • Etxabide, A.; Long, J.; Guerrero, P.; de la Caba, K.; Seyfoddin, A. 3D Printed Lactose-Crosslinked Gelatin Scaffolds as a Drug Delivery System for Dexamethasone. Eur. Polym. J. 2019, 114, 90–97. DOI: 10.1016/j.eurpolymj.2019.02.019.
  • Sahiner, N.; Sagbas, S. Sucrose Based Ionic Liquid Colloidal Microgels in Separation of Biomacromolecules. Sep. Purif. Technol. 2018, 196, 191–199. DOI: 10.1016/j.seppur.2017.07.001.
  • Pasut, G.; Veronese, F. M. Polymer–Drug Conjugation, Recent Achievements and General Strategies. Prog. Polym. Sci. 2007, 32, 933–961. DOI: 10.1016/j.progpolymsci.2007.05.008.
  • Marasini, N.; Haque, S.; Kaminskas, L. M. Polymer-Drug Conjugates as Inhalable Drug Delivery Systems: A Review. Curr. Opin. Colloid Interface Sci. 2017, 31, 18–29. DOI: 10.1016/j.cocis.2017.06.003.
  • Zhao, X.; Jiang, S.; Liu, S.; Chen, S.; Lin, Z. Y.; Pan, G.; He, F.; Li, F.; Fan, C.; Cui, W. Optimization of Intrinsic and Extrinsic Tendon Healing through Controllable Water-Soluble mitomycin-C Release from Electrospun Fibers by Mediating Adhesion-Related Gene Expression. Biomaterials 2015, 61, 61–74. DOI: 10.1016/j.biomaterials.2015.05.012.
  • Sultana, T.; Van Hai, H.; Park, M.; Lee, S.-Y.; Lee, B.-T. Controlled Release of Mitomycin C from Modified Cellulose Based Thermo-Gel Prevents Post-Operative de Novo Peritoneal Adhesion. Carbohydr. Polym. 2020, 229, 115552. DOI: 10.1016/j.carbpol.2019.115552.
  • Papaconstantinou, D.; Diagourtas, A.; Petrou, P.; Rouvas, A.; Vergados, A.; Koutsandrea, C.; Georgalas, I. Trabeculectomy with Healaflow versus Trabeculectomy for the Treatment of Glaucoma: A Case-Control Study. J. Ophthalmol. 2015, 2015, 1–7. DOI: 10.1155/2015/836269.
  • Nejad, Z. M.; Torabinejad, B.; Davachi, S. M.; Zamanian, A.; Garakani, S. S.; Najafi, F.; Nezafati, N. Synthesis, Physicochemical, Rheological and In-Vitro Characterization of Double-Crosslinked Hyaluronic Acid Hydrogels Containing Dexamethasone and PLGA/Dexamethasone Nanoparticles as Hybrid Systems for Specific Medical Applications. Int. J. Biol. Macromol. 2019, 126, 193–208. DOI: 10.1016/j.ijbiomac.2018.12.181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.