287
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Mn2+@PolyDOPA-b-polysarcosine micelle as MRI contrast agent with high longitudinal relaxivity

, , , , , , , ORCID Icon, & show all
Pages 175-181 | Received 13 Feb 2020, Accepted 29 Sep 2020, Published online: 02 Nov 2020

References

  • Fox, M. D.; Raichle, M. E. Spontaneous Fluctuations in Brain Activity Observed with Functional Magnetic Resonance Imaging. Nat. Rev. Neurosci. 2007, 8, 700–711. DOI: 10.1038/nrn2201.
  • Sun, C.; Lee, J. S.; Zhang, M. Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. DOI: 10.1021/cr00081a003.
  • Terreno, E.; Castelli, D. D.; Viale, A.; Aime, S. Challenges for Molecular Magnetic Resonance Imaging. Chem. Rev. 2010, 110, 3019–3042. DOI: 10.1002/chem.201802851.
  • Lauffer, R. B. Paramagnetic Metal-Complexes as Water Proton Relaxation Agents for NMR Imaging-Theory and Design. Chem. Rev 1987, 87, 901–927. DOI: 10.1021/cr00081a003.
  • Garcia-Hevia, L.; Banobre-Lopez, M.; Gallo, J. Recent Progress on Manganese-Based Nanostructures as Responsive MRI Contrast Agents. Chemistry 2019, 25, 431–441. DOI: 10.1002/chem.201802851.
  • Pan, D.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M. Manganese-Based MRI Contrast Agents: Past, Present and Future . Tetrahedron 2011, 67, 8431–8444. DOI: 10.1016/j.tet.2011.07.076.
  • Cao, F.; Huang, T.; Wang, Y.; Liu, F.; Chen, L.; Ling, J.; Sun, J. Novel Lanthanide-Polymer Complexes for Dye-Free Dual Modal Probes for MRI and Fluorescence Imaging. Polym. Chem. 2015, 6, 7949–7957. DOI: 10.1039/C5PY01011J.
  • Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. DOI: 10.1021/cr980440x.
  • Laniado, M.; Weinmann, H. J.; Schörner, W.; Felix, R.; Speck, U. First Use of GdDTPA/Dimeglumine in Man. Physiol. Chem. Phys. Med. NMR 1984, 16, 157–165. PMID: 6505042.
  • Thunus, L.; Lejeune, R. Overview of Transition Metal and Lanthanide Complexes as Diagnostic Tools. Coord. Chem. Rev. 1999, 184, 125–155. DOI: 10.1016/S0010-8545(98)00206-9.
  • Li, Y.; Xie, Y.; Wang, Z.; Zang, N.; Carniato, F.; Huang, Y.; Andolina, C. M.; Parent, L. R.; Ditri, T. B.; Walter, E. D.; et al. Structure and Function of Iron-Loaded Synthetic Melanin. ACS Nano. 2016, 10, 10186–10194. DOI: 10.1021/acsnano.6b05502.
  • Li, Y.; Huang, Y.; Wang, Z.; Carniato, F.; Xie, Y.; Patterson, J. P.; Thompson, M. P.; Andolina, C. M.; Ditri, T. B.; Millstone, J. E.; et al. Polycatechol Nanoparticle MRI Contrast Agents. Small 2016, 12, 668–677. DOI: 10.1002/smll.201502754.
  • Corot, C.; Warlin, D. Superparamagnetic Iron Oxide Nanoparticles for MRI: Contrast Media Pharmaceutical Company R&D Perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 411–422. DOI: 10.1002/wnan.1225.
  • Duguet, E.; Vasseur, S.; Mornet, S.; Devoisselle, J.-M. Magnetic Nanoparticles and Their Applications in Medicine. Nanomedicine (Lond). 2006, 1, 157–168. DOI: 10.2217/17435889.1.2.157.
  • Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-Based Theranostic Agents. Adv. Drug. Deliv. Rev. 2010, 62, 1064–1079. DOI: 10.1016/j.addr.2010.07.009.
  • Bousquet, J. C.; Saini, S.; Stark, D. D.; Hahn, P. F.; Nigam, M.; Wittenberg, J.; Ferrucci, J. T. Gd-DOTA: Characterization of a New Paramagnetic Complex. Radiology 1988, 166, 693–698. DOI: 10.1148/radiology.166.3.3340763.
  • Tofts, P. S. Modeling Tracer Kinetics in Dynamic Gd-DTPA MR Imaging. J. Magn. Reson. Imaging 1997, 7, 91–101. DOI: 10.1002/jmri.1880070113.
  • Taylor, K. M. L.; Rieter, W. J.; Lin, W. B. Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging. J. Am. Chem. Soc. 2008, 130, 14358–10359. DOI: 10.1021/ja803777x.
  • Lohrke, J.; Frenzel, T.; Endrikat, J.; Alves, F. C.; Grist, T. M.; Law, M.; Lee, J. M.; Leiner, T.; Li, K.-C.; Nikolaou, K.; et al. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Adv. Ther. 2016, 33, 1–28. DOI: 10.1007/s12325-015-0275-4.
  • Aime, S.; Botta, M.; Gianolio, E.; Terreno, E. A p(O-2)-Responsive MRI Contrast Agent Based on the Redox Switch of Manganese(II/III) - Porphyrin Complexes. Angew. Chem. Int. Ed. 2000, 39, 747–750. DOI: 10.1002/(Sici)1521-3773(20000218)39:4 < 747::Aid-Anie747 > 3.0.Co;2-2.
  • Drahos, B.; Lukes, I.; Toth, E. Manganese(II) Complexes as Potential Contrast Agents for MRI. Eur. J. Inorg. Chem. 2012, 12, 1975–1986. DOI: 10.1002/ejic.201101336.
  • Na, H. B.; Hyeon, T. Nanostructured T1 MRI Contrast Agents. J. Mater. Chem. 2009, 19, 6267–6273. DOI: 10.1039/b902685a.
  • Shin, T.-H.; Choi, J.-s.; Yun, S.; Kim, I.-S.; Song, H.-T.; Kim, Y.; Park, K. I.; Cheon, J. T1 and T2 Dual-Mode MRI Contrast Agent for Enhancing Accuracy by Engineered Nanomaterials. ACS Nano. 2014, 8, 3393–3401. DOI: 10.1021/nn405977t.
  • Strijkers, G. J.; Mulder, W. J. M.; van Tilborg, G. A. F.; Nicolay, K. MRI Contrast Agents: Current Status and Future Perspectives. Anticancer Agents Med. Chem. 2007, 7, 291–305. DOI: 10.2174/187152007780618135.
  • Troughton, J. S.; Greenfield, M. T.; Greenwood, J. M.; Dumas, S.; Wiethoff, A. J.; Wang, J.; Spiller, M.; McMurry, T. J.; Caravan, P. Synthesis and Evaluation of a High Relaxivity Manganese(II)-Based MRI Contrast Agent. Inorg. Chem. 2004, 43, 6313–6323. DOI: 10.1021/ic049559g.
  • Ren, K.; He, C.; Xiao, C.; Li, G.; Chen, X. Injectable Glycopolypeptide Hydrogels as Biomimetic Scaffolds for Cartilage Tissue Engineering. Biomaterials 2015, 51, 238–249. DOI: 10.1016/j.biomaterials.2015.02.026.
  • Birke, A.; Ling, J.; Barz, M. Polysarcosine-Containing Copolymers: Synthesis, Characterization, Self-Assembly, and Applications. Prog. Polym. Sci. 2018, 81, 163–208. DOI: 10.1016/j.progpolymsci.2018.01.002.
  • Deming, T. J. Synthesis of Side-Chain Modified Polypeptides. Chem. Rev. 2016, 116, 786–808. DOI: 10.1021/acs.chemrev.5b00292.
  • Gangloff, N.; Ulbricht, J.; Lorson, T.; Schlaad, H.; Luxenhofer, R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem. Rev. 2016, 116, 1753–1802. DOI: 10.1021/acs.chemrev.5b00201.
  • Hoogenboom, R.; Schlaad, H. Thermoresponsive Poly(2-Oxazoline)s, Polypeptoids, and Polypeptides. Polym. Chem. 2017, 8, 24–40. DOI: 10.1039/C6PY01320A.
  • Huang, J.; Heise, A. Stimuli Responsive Synthetic Polypeptides Derived from N-Carboxyanhydride (NCA) Polymerisation. Chem. Soc. Rev. 2013, 42, 7373–7390. DOI: 10.1039/c3cs60063g.
  • Klinker, K.; Barz, M. Polypept(o)ides: Hybrid Systems Based on Polypeptides and Polypeptoids. Macromol. Rapid Commun. 2015, 36, 1943–1957. DOI: 10.1002/marc.201500403.
  • Knight, A. S.; Zhou, E. Y.; Francis, M. B.; Zuckermann, R. N. Sequence Programmable Peptoid Polymers for Diverse Materials Applications. Adv. Mater. 2015, 27, 5665–5691. DOI: 10.1002/adma.201500275.
  • Liu, X.; Xiang, J.; Zhu, D.; Jiang, L.; Zhou, Z.; Tang, J.; Liu, X.; Huang, Y.; Shen, Y. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery. Adv. Mater. 2016, 28, 1743–1752. DOI: 10.1002/adma.201504288.
  • Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Recent Advances in Amino Acid N-Carboxyanhydrides and Synthetic Polypeptides: Chemistry, Self-Assembly and Biological Applications. Chem. Commun. (Camb.) 2014, 50, 139–155. DOI: 10.1039/c3cc46317f.
  • Shen, Y.; Fu, X.; Fu, W.; Li, Z. Biodegradable Stimuli-Responsive Polypeptide Materials Prepared by Ring Opening Polymerization. Chem. Soc. Rev. 2015, 44, 612–622. DOI: 10.1039/c4cs00271g.
  • Zhao, L.; Li, N.; Wang, K.; Shi, C.; Zhang, L.; Luan, Y. A Review of Polypeptide-Based Polymersomes. Biomaterials 2014, 35, 1284–1301. DOI: 10.1016/j.biomaterials.2013.10.063.
  • Shiraishi, K.; Kawano, K.; Maitani, Y.; Yokoyama, M. Polyion Complex Micelle MRI Contrast Agents from Poly(Ethylene Glycol)-b-Poly(l-Lysine) Block Copolymers Having Gd-DOTA; Preparations and Their Control of T(1)-Relaxivities and Blood Circulation Characteristics. J. Control Release 2010, 148, 160–167. DOI: 10.1016/j.jconrel.2010.08.018.
  • Tao, X. F.; Li, M. H.; Ling, J. α-Amino Acid N-Thiocarboxyanhydrides: A Novel Synthetic Approach toward Poly(Alpha-Amino Acid)s. Eur. Polym. J. 2018, 109, 26–42. DOI: 10.1016/j.eurpolymj.2018.08.039.
  • Tao, X.; Zheng, B.; Bai, T.; Li, M.-H.; Ling, J. Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride through Regioselective Initiation of Cysteamine: A Direct Way toward Thiol-Capped Polypeptoids. Macromolecules 2018, 51, 4494–4501. DOI: 10.1021/acs.macromol.8b00259.
  • Tao, X.; Zheng, B.; Bai, T.; Zhu, B.; Ling, J. Hydroxyl Group Tolerated Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride Mediated by Aminoalcohols: A Simple Way to α-Hydroxyl-Ω-Aminotelechelic Polypeptoids. Macromolecules 2017, 50, 3066–3077. DOI: 10.1021/acs.macromol.7b00309.
  • Tao, X.; Zheng, B.; Kricheldorf, H. R.; Ling, J. Are N-Substituted Glycine N-Thiocarboxyanhydride Monomers Really Hard to Polymerize? J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 404–410. DOI: 10.1002/pola.28402.
  • Zheng, B. T.; Tao, X. F.; Ling, J. Water Tolerated Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride Initiated by Primary Amines. Acta Polym. Sin. 2018, 1, 72–79. DOI: 10.11777/j.issn1000-3304.2018.17172.
  • Cen, J.; Zheng, B.; Yang, Y.; Wu, J.; Mao, Z.; Ling, J.; Han, G. Ag@polyDOPA-b-Polysarcosine Hybrid Nanoparticles with Antimicrobial Properties from in-Situ Reduction and NTA Polymerization. Eur. Polym. J. 2019, 121, 109269. DOI: 10.1016/j.eurpolymj.2019.109269.
  • Deng, Y.; Chen, H.; Tao, X.; Trépout, S.; Ling, J.; & Li, M. H. Synthesis and Self-Assembly of Poly(Ethylene Glycol)-Block-Poly(N-3-(Methylthio)Propyl Glycine) and Their Oxidation-Sensitive Polymersomes. Chin. Chem. Lett. 2019, 31, 1931–1935. DOI: 10.1016/j.cclet.2019.12.026.
  • Miao, Y.; Xie, F.; Cen, J.; Zhou, F.; Tao, X.; Luo, J.; Han, G.; Kong, X.; Yang, X.; Sun, J.; et al. Fe3+@polyDOPA-b-Polysarcosine, a T1-Weighted MRI Contrast Agent via Controlled NTA Polymerization. ACS Macro Lett. 2018, 7, 693–698. DOI: 10.1021/acsmacrolett.8b00287.
  • Liu, Q.; Chen, S.; Chen, J.; Du, J. An Asymmetrical Polymer Vesicle Strategy for Significantly Improving T1 MRI Sensitivity and Cancer-Targeted Drug Delivery. Macromolecules 2015, 48, 739–749. DOI: 10.1021/ma502255s.
  • Powell, D. H.; Dhubhghaill, O. M. N.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E. Structural and Dynamic Parameters Obtained from 17O NMR, EPR, and NMRD Studies of Monomeric and Dimeric Gd3+ Complexes of Interest in Magnetic Resonance Imaging: An Integrated and Theoretically Self Consistent Approach. J. Am. Chem. Soc. 1996, 118, 9333–9346. DOI: 10.1021/ja961743g.
  • Zhou, Z.; Wang, L.; Chi, X.; Bao, J.; Yang, L.; Zhao, W.; Chen, Z.; Wang, X.; Chen, X.; Gao, J.; et al. Engineered Iron-Oxide-Based Nanoparticles as Enhanced T1 Contrast Agents for Efficient Tumor Imaging. ACS Nano. 2013, 7, 3287–3296. DOI: 10.1021/nn305991e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.