180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization and evaluation of novel HIPE hydrogels: Application for treatment of hazardous waste incineration plant effluent

&
Pages 613-624 | Received 26 May 2022, Accepted 21 Jun 2022, Published online: 22 Jul 2022

References

  • Masoumi, H.; Ghaemi, A.; Gilani, H. G. Evaluation of Hyper-Cross-Linked Polymers Performances in the Removal of Hazardous Heavy Metal İons: A Review. Sep. Purif. Technol. 2021, 260, 118221. DOI: 10.1016/j.seppur.2020.118221.
  • Essawy, H. A.; Ibrahim, H. S. Synthesis and Characterization of Poly(Vinylpyrrolidone-co-Methylacrylate) Hydrogel for Removal and Recovery of Heavy Metal İons from Wastewater. React. Funct. Polym. 2004, 61, 421–432. DOI: 10.1016/j.reactfunctpolym.2004.08.003.
  • Kemik, Ö. F.; Ngwabebhoh, F. A.; Yildiz, U. A Response Surface Modelling Study for Sorption of Cu2+, Ni2+, Zn2+ and Cd2+ Using Chemically Modified Poly(Vinylpyrrolidone) and Poly(Vinylpyrrolidone-co-Methylacrylate) Hydrogels. Adsorp. Sci. Technol. 2017, 35, 263–283. DOI: 10.1177/0263617416674950.
  • Şolpan, D.; Torun, M. (Sodium Alginate/Acrylamide) Semi‐Interpenetrating Polymer Networks and Their Usability on Removal of Lead, Cadmium, Nickel Ions. J. Macromol. Sci., A. 2005, 42, 1435–1449. DOI: 10.1080/10601320500207554.
  • Yildiz, U.; Kemik, Ö. F.; Hazer, B. The Removal of Heavy Metal İons from Aqueous Solutions by Novel pH-Sensitive Hydrogels. J. Hazard. Mater. 2010, 183, 521–532. DOI: 10.1016/j.jhazmat.2010.07.055.
  • Krajnc, P.; Štefanec, D.; Pulko, I. Acrylic Acid “Reversed” PolyHIPEs. Macromol. Rapid Commun. 2005, 26, 1289–1293. DOI: 10.1002/marc.200500353.
  • Kulygin, O.; Silverstein, M. S. Porous Poly(2-Hydroxyethyl Methacrylate) Hydrogels Synthesized within High İnternal Phase Emulsions. Soft Matter. 2007, 3, 1525–1529. DOI: 10.1039/b711610a.
  • Erdem, A.; Ngwabebhoh, F. A.; Yildiz, U. Novel Macroporous Cryogels with Enhanced Adsorption Capability for the Removal of Cu(II) İons from Aqueous Phase: Modelling, Kinetics and Recovery Studies. J. Environ. Chem. Eng. 2017, 5, 1269–1280. DOI: 10.1016/j.jece.2017.02.011.
  • Zhang, W.-J.; Yan, Y.-Z.; Nagappan, S.; He, S.; Ha, C.-S.; Jin, Y.-S. Dual (Thermo-/pH-) Responsive P(NIPAM-co-AA-co-HEMA) Nanocapsules for Controlled Release of 5-Fluorouracil. J. Macromol. Sci. A. 2021, 58, 860–871. DOI: 10.1080/10601325.2021.1964368.
  • Ozay, O.; Ilgin, P.; Ozay, H.; Gungor, Z.; Yilmaz, B.; Kıvanç, M. R. The Preparation of Various Shapes and Porosities of Hydroxyethyl Starch/p(HEMA-co-NVP) IPN Hydrogels as Programmable Carrier for Drug Delivery. J. Macromol. Sci. A. 2020, 57, 379–387. DOI: 10.1080/10601325.2019.1700803.
  • Silverstein, M. S. PolyHIPEs: Recent Advances in Emulsion-Templated Porous Polymers. Prog. Polym. Sci. 2014, 39, 199–234. DOI: 10.1016/j.progpolymsci.2013.07.003.
  • Silverstein, M. S. Emulsion-Templated Porous Polymers: A Retrospective Perspective. Polymer. 2014, 55, 304–320. DOI: 10.1016/j.polymer.2013.08.068.
  • Busby, W.; Cameron, N. R.; Jahoda, C. A. B. Emulsion-Derived Foams (PolyHIPEs) Containing Poly(ε-Caprolactone) as Matrixes for Tissue Engineering. Biomacromolecules. 2001, 2, 154–164. DOI: 10.1021/bm0000889.
  • Jerenec, S.; Šimić, M.; Savnik, A.; Podgornik, A.; Kolar, M.; Turnšek, M.; Krajnc, P. Glycidyl Methacrylate and Ethylhexyl Acrylate Based polyHIPE Monoliths: Morphological, Mechanical and Chromatographic Properties. React. Funct. Polym. 2014, 78, 32–37. DOI: 10.1016/j.reactfunctpolym.2014.02.011.
  • Moglia, R.; Whitely, M.; Brooks, M.; Robinson, J.; Pishko, M.; Cosgriff-Hernandez, E. Solvent-Free Fabrication of polyHIPE Microspheres for Controlled Release of Growth Factors. Macromol. Rapid Commun. 2014, 35, 1301–1305. DOI: 10.1002/marc.201400145.
  • Nalawade, A. C.; Ghorpade, R. V.; Shadbar, S.; Qureshi, M. S.; Chavan, N. N.; Khan, A. A.; Ponrathnam, S. Inverse High İnternal Phase Emulsion Polymerization (i-HIPE) of GMMA, HEMA and GDMA for the Preparation of Superporous Hydrogels as a Tissue Engineering Scaffold. J. Mater. Chem. B. 2016, 4, 450–460. DOI: 10.1039/c5tb01873k.
  • Silverstein, M. S.; Tai, H.; Sergienko, A.; Lumelsky, Y.; Pavlovsky, S. PolyHIPE: IPNs, Hybrids, Nanoscale Porosity, Silica Monoliths and ICP-Based Sensors. Polymer. 2005, 46, 6682–6694. DOI: 10.1016/j.polymer.2005.05.022.
  • Jafari, M.; Kaffashi, B. Synthesis and Characterization of a Novel Solvent-Free Dextran-HEMA-PNIPAM Thermosensitive Nanogel. J. Macromol. Sci., A. 2016, 53, 68–74. DOI: 10.1080/10601325.2016.1120173.
  • Jadhav, S. A.; Brunella, V.; Sapino, S.; Caprarelli, B.; Riedo, C.; Chirio, D.; Gallarate, M. Poly (N-İsopropylacrylamide) Based Hydrogels as Novel Precipitation and Stabilization Media for Solid Lipid Nanoparticles (SLNs). J. Colloid Interface Sci. 2019, 541, 454–460. DOI: 10.1016/j.jcis.2019.01.107.
  • Komatsu, S.; Asoh, T.-A.; Ishihara, R.; Kikuchi, A. Fabrication of Thermoresponsive Degradable Hydrogel Made by Radical Polymerization of 2-Methylene-1,3-Dioxepane: Unique Thermal Coacervation in Hydrogel. Polymer. 2019, 179, 121633. DOI: 10.1016/j.polymer.2019.121633.
  • Krakovský, I.; Kouřilová, H.; Hrubovský, M.; Labuta, J.; Hanyková, L. Thermoresponsive Double Network Hydrogels Composed of Poly(N-İsopropylacrylamide) and Polyacrylamide. Eur. Polym. J. 2019, 116, 415–424. DOI: 10.1016/j.eurpolymj.2019.04.032.
  • Yu, Q. J.; Mao, J.; Wang, S.; Guo, Z. Y. A Simple Multifunctional PNIPAM-GO/PANI Hydrogel Preparation Strategy and İts Application in Dye Adsorption and İnfrared Switching. J. Macromol. Sci., A. 2020, 57, 751–760. DOI: 10.1080/10601325.2020.1772672.
  • Hazer, B. New Macromonomeric İnitiators (Macroinimers), 2 Gelation in Bulk Polymerization of Styrene with Macroinimers. Makromol. Chem. 1992, 193, 1081–1086. DOI: 10.1002/macp.1992.021930505.
  • Allı, A.; Hazer, B.; Baysal, B. M. Determination of Solubility Parameters of Cross-Linked Macromonomeric İnitiators Based on Polypropylene Glycol. Eur. Polym. J. 2006, 42, 3024–3031. DOI: 10.1016/j.eurpolymj.2006.07.012.
  • Yamamoto, Y.; Nakao, W.; Atago, Y.; Ito, K.; Yagci, Y. A Novel Macroinimer of Polyethylene Oxide: Synthesis of Hyper Branched Networks by Photoinduced H-Abstraction Process. Eur. Polym. J. 2003, 39, 545–550. DOI: 10.1016/S0014-3057(02)00273-2.
  • Yıldız, U.; Hazer, B. Dispersion Redox Copolymerization of Methyl Methacrylate with Macromonomeric Azoinitiator as a Macrocrosslinker. Polymer. 2000, 41, 539–544. DOI: 10.1016/S0032-3861(99)00217-7.
  • Erdem, A.; Mammadli, N.; Yildiz, U. Preparation of Hydrophobic Macroinimer–Based Novel Hybrid Sorbents for Efficient Removal of Organic Liquids from Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 22064–22076. DOI: 10.1007/s11356-020-11841-6.
  • Tauer, K.; Yildiz, U. Reactive Poly(Ethylene Glycol)s in Aqueous Radical Heterophase Polymerization. Macromolecules. 2003, 36, 8638–8647. DOI: 10.1021/ma0303115.
  • Yildiz, U.; Capek, I.; Sarov, Y.; Corobea, M. C.; Polovkova, J. Kinetics and Colloidal Parameters of Miniemulsion Polymerization of Butyl Acrylate. Polym. Int. 2009, 58, 1411–1421. DOI: 10.1002/pi.2676.
  • Yildiz, U.; Capek, I. Microemulsion Polymerization of Styrene in the Presence of Macroinimer. Polymer. 2003, 44, 2193–2200. DOI: 10.1016/S0032-3861(03)00096-X.
  • Yildiz, U.; Landfester, K. Miniemulsion Polymerization of Styrene in the Presence of Macromonomeric İnitiators. Polymer. 2008, 49, 4930–4934. DOI: 10.1016/j.polymer.2008.09.036.
  • Taşdelen, B.; Çifçi, D. İ.; Meriç, S. Preparation of N-İsopropylacrylamide/İtaconic Acid/Pumice Highly Swollen Composite Hydrogels to Explore Their Removal Capacity of Methylene Blue. Colloids Surf., A. 2017, 519, 245–253. DOI: 10.1016/j.colsurfa.2016.11.003.
  • Sulu, E.; Biswas, C. S.; Stadler, F. J.; Hazer, B. Synthesis, Characterization, and Drug Release Properties of Macroporous Dual Stimuli Responsive Stereo Regular Nanocomposites Gels of Poly(N-İsopropylacrylamide) and Graphene Oxide. J. Porous Mater. 2017, 24, 389–401. DOI: 10.1007/s10934-016-0272-2.
  • Çaykara, T.; Akçakaya, İ. Synthesis and Network Structure of İonic Poly(N,N-Dimethylacrylamide-co-Acrylamide) Hydrogels: Comparison of Swelling Degree with Theory. Eur. Polym. J. 2006, 42, 1437–1445. DOI: 10.1016/j.eurpolymj.2006.01.001.
  • Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly (2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels. Polímeros. 2015, 25, 547–555. DOI: 10.1590/0104-1428.2097.
  • Kaplan, H.; Güner, A. Characterization and Determination of Swelling and Diffusion Characteristics of Poly (n‐Vinyl‐2‐Pyrrolidone) Hydrogels in Water. J. Appl. Polym. Sci. 2000, 78, 994–1000. DOI: 10.1002/1097-4628(20001031)78:5<994::AID-APP80>3.0.CO;2-R.
  • Antić, K. M.; Babić, M. M.; Vuković, J. J. J.; Vasiljević-Radović, D. G.; Onjia, A. E.; Filipović, J. M.; Tomić, S. L. Preparation and Characterization of Novel P(HEA/IA) Hydrogels for Cd2+ İon Removal from Aqueous Solution. Appl. Surf. Sci. 2015, 338, 178–189. DOI: 10.1016/j.apsusc.2015.02.133.
  • Son, Y.-K.; Jung, Y. P.; Kim, J.-H.; Chung, D. J. Preparation and Properties of PEG-Modified PHEMA Hydrogel and the Morphological Effect. Macromol. Res. 2006, 14, 394–399. DOI: 10.1007/BF03219100.
  • Shekhar, S.; Mukherjee, M.; Sen, A. K. Studies on Thermal and Swelling Properties of Poly (NIPAM-co-2-HEA) Based Hydrogels. Adv. Mater. Res. 2012, 1, 269–284. DOI: 10.12989/amr.2012.1.4.269.
  • Mathieu, K.; Jérôme, C.; Debuigne, A. Influence of the Macromolecular Surfactant Features and Reactivity on Morphology and Surface Properties of Emulsion-Templated Porous Polymers. Macromolecules 2015, 48, 6489–6498. DOI: 10.1021/acs.macromol.5b00858.
  • Biswas, C. S.; Wang, Q.; Galluzzi, M.; Wu, Y.; Navale, S. T.; Du, B.; Stadler, F. J. Versatile Mechanical and Thermoresponsive Properties of Macroporous Copolymer Gels. Macromol. Chem. Phys. 2017, 218, 1600554. DOI: 10.1002/macp.201600554.
  • Wu, X. S.; Hoffman, A. S.; Yager, P. Synthesis and Characterization of Thermally Reversible Macroporous Poly (N‐İsopropylacrylamide) Hydrogels. J. Polym. Sci. A Polym. Chem. 1992, 30, 2121–2129. DOI: 10.1002/pola.1992.080301005.
  • Allı, A.; Hazer, B. Poly(N-İsopropylacrylamide) Thermoresponsive Cross-Linked Conjugates Containing Polymeric Soybean Oil and/or Polypropylene Glycol. Eur. Polym. J. 2008, 44, 1701–1713. DOI: 10.1016/j.eurpolymj.2008.04.004.
  • Grant, N. C.; Cooper, A. I.; Zhang, H. Uploading and Temperature-Controlled Release of Polymeric Colloids via Hydrophilic Emulsion-Templated Porous Polymers. ACS Appl. Mater. Interfaces. 2010, 2, 1400–1406. DOI: 10.1021/am100049r.
  • Sergienko, A. Y.; Tai, H.; Narkis, M.; Silverstein, M. S. Polymerized High İnternal Phase Emulsions Containing a Porogen: Specific Surface Area and Sorption. J. Appl. Polym. Sci. 2004, 94, 2233–2239. DOI: 10.1002/app.21170.
  • Kushwaha, S.; Sreedhar, B.; Bhatt, R.; Sudhakar, P. P. Spectroscopic Characterization for Remediation of Copper, Cadmium and Mercury Using Modified Palm Shell Powder. J. Taiwan Inst. Chem. Eng. 2015, 46, 191–199. DOI: 10.1016/j.jtice.2014.09.018.
  • Borreguero, A. M.; Leura, A.; Rodríguez, J. F.; Vaselli, O.; Nisi, B.; Higueras, P. L.; Carmona, M. Modelling the Mercury Removal from Polluted Waters by Using TOMAC Microcapsules considering the Metal Speciation. Chem. Eng. J. 2018, 341, 308–316. DOI: 10.1016/j.cej.2018.01.113.
  • Wang, X.; Deng, W.; Xie, Y.; Wang, C. Selective Removal of Mercury İons Using a Chitosan–Poly(Vinyl Alcohol) Hydrogel Adsorbent with Three-Dimensional Network Structure. Chem. Eng. J. 2013, 228, 232–242. DOI: 10.1016/j.cej.2013.04.104.
  • Chen, J. J.; Ahmad, A. L.; Ooi, B. S. Poly(N-İsopropylacrylamide-co-Acrylic Acid) Hydrogels for Copper İon Adsorption: Equilibrium İsotherms, Kinetic and Thermodynamic Studies. J. Environ. Chem. Eng. 2013, 1, 339–348. DOI: 10.1016/j.jece.2013.05.012.
  • Chen, J.; Jiang, X.; Yin, D.; Zhang, W. Preparation of a Hydrogel-Based Adsorbent for Metal Ions through High Internal Phase Emulsion Polymerization. ACS Omega. 2020, 5, 19920–19927. DOI: 10.1021/acsomega.9b03405.
  • Kumar, R.; Sharma, R. K.; Singh, A. P. Grafting of Cellulose with N-İsopropylacrylamide and Glycidyl Methacrylate for Efficient Removal of Ni(II), Cu(II) and Pd(II) İons from Aqueous Solution. Sep. Purif. Technol. 2019, 219, 249–259. DOI: 10.1016/j.seppur.2019.03.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.