355
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of p(HEMA-co-AETAC) nanocomposite hydrogel with vinyl-function montmorillonite nanoparticles and effective removal of methyl orange from aqueous solution

ORCID Icon, , , & ORCID Icon
Pages 108-123 | Received 03 Nov 2022, Accepted 09 Jan 2023, Published online: 23 Jan 2023

References

  • Dutta, S.; Gupta, B.; Srivastava, S. K.; Gupta, A. K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. 10.1039/d1ma00354b.
  • Khan, S.; Edathil, A. A.; Banat, F. Sustainable Synthesis of Graphene-Based Adsorbent Using Date Syrup. Sci. Rep. 2019, 9, 1–14. 10.1038/s41598-019-54597-x.
  • Rajasulochana, P.; Preethy, V. Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water – A Comprehensive Review. Resour.-Efficient Technol. 2016, 2, 175–184. DOI: 10.1016/j.reffit.2016.09.004.
  • Moradihamedani, P. Recent advances in Dye Removal from Wastewater by Membrane Technology: A Review. Polym. Bull. 2022, 79, 2603–2631.. DOI: 10.1007/s00289-021-03603-2.
  • Saeed, M.; M.Muneer, A. H.; Akram, N. Photocatalysis: An Effective Tool for Photodegradation of Dyes-A Review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. DOI: 10.1007/s11356-021-16389-7.
  • Son, D. J.; Kim, W. Y.; Jung, B. R.; Chang, D.; Hong, K. H. Pilot-Scale Anoxic/Aerobic Biofilter System Combined with Chemical Precipitation for Tertiary Treatment of Wastewater. J. Water Process. Eng. 2020, 35, 101224. 10.1016/J.JWPE.2020.101224.
  • Cseri, L.; Topuz, F.; Abdulhamid, M. A.; Alammar, A.; Budd, P. M.; Szekely, G. Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewater. Adv. Mater. Technol. 2021, 2000955, 1–9. DOI: 10.1002/admt.202000955.
  • Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M. J.; Hussain, M. A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. 10.1007/s11356-021-12395-x.
  • Rong, N.; Chen, C.; Ouyang, K.; Zhang, K.; Wang, X.; Xu, Z. Adsorption characteristics of Directional Cellulose Nanofiber/Chitosan/Montmorillonite Aerogel as Adsorbent for Wastewater Treatment. Sep. Purif. Technol. 2021, 274, 119120. 10.1016/J.SEPPUR.2021.119120.
  • Onder, A.; Ozay, H. Highly efficient Removal of Methyl Orange from Aqueous Media by Amine Functional Cyclotriphosphazene Submicrospheres as Reusable Column Packing Material. Chem. Eng. Process. - Process Intensif. 2021, 165, 108427. 10.1016/j.cep.2021.108427.
  • Cao, M.; Shen, Y.; Yan, Z.; Wei, Q.; Jiao, T.; Shen, Y.; Han, Y.; Wang, Y.; Wang, S.; Xia, Y.; Yue, T. Extraction-like Removal of Organic Dyes from Polluted Water by the Graphene Oxide/PNIPAM Composite System. Chem. Eng. J. 2021, 405, 126647. DOI: 10.1016/j.cej.2020.126647.
  • Bayram, T.; Bucak, S.; Ozturk, D. BR13 Dye Removal Using Sodium Dodecyl Sulfate Modified Montmorillonite: Equilibrium, Thermodynamic, Kinetic and Reusability Studies. Chem. Eng. Process. - Process Intensif. 2020, 158, 108186. DOI: 10.1016/j.cep.2020.108186.
  • Delpiano, G. R.; Tocco, D.; Medda, L.; Magner, E.; Salis, A. Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent. Int. J. Mol. Sci. 2021, 22, 788–716. DOI: 10.3390/ijms22020788.
  • Kıvanç, M. R.; Ozay, O.; Ozay, H.; Ilgin, P. Removal of Anionic Dyes from Aqueous Media by Using a Novel High Positively Charged Hydrogel with High Capacity. J. Disper. Sci. Technol. 2022, 43, 1000–1015. DOI: 10.1080/01932691.2020.1847658.
  • Jana, S.; Ray, J.; Mondal, B.; Tripathy, T. Efficient and Selective Removal of Cationic Organic Dyes from Their Aqueous Solutions by a Nanocomposite Hydrogel, Katira Gum-Cl-Poly(Acrylic Acid-co-N, N-Dimethylacrylamide)@Bentonite. Appl. Clay Sci. 2019, 173, 46–64. DOI: 10.1016/j.clay.2019.03.009.
  • Arican, F.; Uzuner-Demir, A.; Sancakli, A.; Ismar, E. Synthesis and Characterization of Superabsorbent Hydrogels from Waste Bovine Hair via Keratin Hydrolysate Graft with Acrylic Acid (AA) and Acrylamide (AAm). Chem. Pap. 2021, 75, 6601–6610. DOI: 10.1007/s11696-021-01828-z.
  • Durmuş, S.; Yilmaz, B.; Kıvanç, M. R.; Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Synthesis, Characterization, and İn Vitro Drug Release Properties of AuNPs/p(AETAC-co-VI)/Q Nanocomposite Hydrogels. Gold Bull. 2021, 54, 75–87. DOI: 10.1007/s13404-021-00295-4.
  • Pei, M.; Peng, X.; Wan, T.; Fan, P.; Yang, H.; Liu, X.; Xu, W.; Zhou, Y.; Xiao, P. Double Cross-Linked Poly(Vinyl Alcohol) Microcomposite Hydrogels with High Strength and Cell Compatibility. Eur. Polym. J. 2021, 160, 110786. DOI: 10.1016/j.eurpolymj.2021.110786.
  • Ozay, H.; Tarımeri, N.; Gungor, Z.; Demirbakan, B.; Özcan, B.; Sezgintürk, M. K.; Ozay, O. A New Approach to Synthesis of Highly Dispersed Gold Nanoparticles via Glucose Oxidase-Immobilized Hydrogel and Usage in The Reduction of 4-Nitrophenol. ChemistrySelect 2020, 5, 9143–9152. DOI: 10.1002/slct.202002327.
  • Puri, C.; Sumana, G. Highly Effective Adsorption of Crystal Violet Dye from Contaminated Water Using Graphene Oxide İntercalated Montmorillonite Nanocomposite. Appl. Clay Sci. 2018, 166, 102–112. DOI: 10.1016/j.clay.2018.09.012.
  • Gollakota, A. R. K.; Munagapati, V. S.; Volli, V.; Gautam, S.; Wen, J. C.; Shu, C. M. Coal Bottom Ash Derived Zeolite (SSZ-13) for the Sorption of Synthetic Anion Alizarin Red S (ARS) Dye. J. Hazard. Mater. 2021, 416, 125925. DOI: 10.1016/j.jhazmat.2021.125925.
  • Gao, B.; Yu, H.; Wen, J.; Zeng, H.; Liang, T.; Zuo, F.; Cheng, C. Super-Adsorbent Poly(Acrylic Acid)/Laponite Hydrogel with Ultrahigh Mechanical Property for Adsorption of Methylene Blue. J. Environ. Chem. Eng. 2021, 9, 106346. DOI: 10.1016/j.jece.2021.106346.
  • Li, J.; Zheng, Y.; Feng, X.; Lv, C.; Liu, X.; Zhao, Y.; Chen, L. Adsorption Removal of Ni(II) and Phenol from Aqueous Solution by Modified Attapulgite and İts Composite Hydrogel. Environ. Technol. (United Kingdom) 2021, 42, 2413–2427. DOI: 10.1080/09593330.2019.1703821.
  • Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Preparation of Composite Hydrogels Containing Fly Ash as Low-Cost Adsorbent Material and İts Use in Dye Adsorption. Int. J. Environ. Sci. Technol. 2022, 19, 7031–7048. DOI: 10.1007/s13762-021-03622-6.
  • Lawchoochaisakul, S.; Monvisade, P.; Siriphannon, P. Cationic Starch İntercalated Montmorillonite Nanocomposites as Natural Based Adsorbent for Dye Removal. Carbohydr. Polym. 2021, 253, 117230. DOI: 10.1016/j.carbpol.2020.117230.
  • Chen, Z.; Zhang, Z.-B.; Zeng, J.; Zhang, Z.-J.; Ma, S.; Tang, C.-M.; Xu, J.-Q. Preparation of Polyethyleneimine-Modified Chitosan/Ce-UIO-66 Composite Hydrogel for the Adsorption of Methyl Orange. Carbohydr. Polym. 2023, 299, 120079. DOI: 10.1016/j.carbpol.2022.120079.
  • Liu, X.; Zhang, Y.; Ju, H.; Yang, F.; Luo, X.; Zhang, L. Uptake of Methylene Blue on Divinylbenzene Cross-Linked Chitosan/Maleic Anhydride Polymer by Adsorption Process. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 629, 127424. DOI: 10.1016/j.colsurfa.2021.127424.
  • Guilherme, M. R.; Fajardo, A. R.; Moia, T. A.; Kunita, M. H.; Gonçalves, M. C.; Rubira, A. F.; Tambourgi, E. B. Porous Nanocomposite Hydrogel of Vinyled Montmorillonite-Crosslinked Maltodextrin-Co-Dimethylacrylamide as a Highly Stable Polymer Carrier for Controlled Release Systems. Eur. Polym. J. 2010, 46, 1465–1474. DOI: 10.1016/j.eurpolymj.2010.04.008.
  • Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Zeolite : Excellent Catalysts for Hydrogenation and Heck Reactions. Chem. Mater. 2004, 21, 3714–3724. DOI: 10.1021/cm0352504.
  • Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Removal of Dye from Aqueous Medium with pH-Sensitive Poly[(2-(Acryloyloxy)Ethyl]Trimethylammonium Chloride-Co-1-Vinyl-2-Pyrrolidone] Cationic Hydrogel. J. Environ. Chem. Eng. 2020, 8, 104436–102020. DOI: 10.1016/j.jece.2020.104436.
  • Lin, X.; Guo, L.; Shaghaleh, H.; Hamoud, Y. A.; Xu, X.; Liu, H. A TEMPO-Oxidized Cellulose Nanofibers/MOFs Hydrogel with Temperature and pH Responsiveness for Fertilizers Slow-Release. Int. J. Biol. Macromol. 2021, 191, 483–491. DOI: 10.1016/j.ijbiomac.2021.09.075.
  • Ozsoy, F.; Ozdilek, B.; Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Graphene nanoplate İncorporated Gelatin/Poly(2-(Acryloyloxy)Ethyl Trimethylammonium Chloride) Composites Hydrogel for Highly Effective Removal of Alizarin Red S from Aqueous Solution. J. Polym. Res. 2022, 29, 481. DOI: 10.1007/s10965-022-03327-5.
  • Mishra, A. K.; Allauddin, S.; Narayan, R.; Aminabhavi, T. M.; Raju, K. Characterization of Surface-Modified Montmorillonite Nanocomposites. Ceram. Int. 2012, 38, 929–934. DOI: 10.1016/j.ceramint.2011.08.012.
  • Chen, X.; Sun, C.; Wang, Q.; Tan, H.; Zhang, Y. Preparation of Glycidyl Methacrylate Grafted Starch Adhesive to Apply in High-Performance and Environment-Friendly Plywood. Int. J. Bio Macromol. 2022, 194, 954–961. DOI: 10.1016/j.ijbiomac.2021.11.152.
  • Yilmaz, B.; Ozay, O. Synthesis, Characterization and Biomedical Applications of p(HEMA-co-APTMACI) Hydrogels Crosslinked with Modified Silica Nanoparticles. Bioint. Res. Appl. Chem. 2022, 12, 3664–3680. DOI: 10.33263/BRIAC123.36643680.
  • Ge, W.; Ma, Q.; Ai, Z.; Wang, W.; Jia, F.; Song, S. Three-Dimensional Reduced Graphene Oxide/Montmorillonite Nanosheet Aerogels as Electrode Material for Supercapacitor Application. Appl. Clay Sci. 2021, 206, 106022. DOI: 10.1016/j.clay.2021.106022.
  • Liu, C.; Liu, S.; Wu, P.; Dai, Y.; Tran, L.; Zhu, N.; Guo, C.; Sohoo, I. Enhancing the Adsorption Behavior and Mechanism of Sr(II) by Functionalized Montmorillonite with Different 3-Aminopropyltriethoxysilane (APTES) Ratios. RSC Adv. 2016, 6, 83288–83295. DOI: 10.1039/C6RA19362E.
  • Banerjee, S. L.; Khamrai, M.; Kundu, P. P.; Singha, N. K. Synthesis of a Self-Healable and pH Responsive Hydrogel Based on an İonic Polymer/Clay Nanocomposite. RSC Adv. 2016, 6, 81654–81665. DOI: 10.1039/C6RA01074A.
  • Qi, X.; Zeng, Q.; Tong, X.; Su, T.; Xie, L.; Yuan, K.; Xu, J.; Shen, J. Polydopamine/Montmorillonite-Embedded Pullulan Hydrogels as Efficient Adsorbents for Removing Crystal Violet. J. Hazard. Mater. 2021, 402, 123359. DOI: 10.1016/j.jhazmat.2020.123359.
  • Roa, K.; Tapiero, Y.; Thotiyl, M. O.; Sánchez, J. Hydrogels Based on Poly([2-(Acryloxy)Ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers 2021, 13, 2265. DOI: 10.3390/polym13142265.
  • Maria Rahman, M.; Al Foisal, J.; Ihara, H.; Takafuji, M. Takafuji M Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Silica Nanoparticle Crosslinked Acrylamide Hybrid Hydrogels. New J. Chem. 2021, 45, 20107–20119. DOI: 10.1039/D1NJ04383H.
  • Darwish, A. A. A.; Rashad, M.; Al-Aoh, H. A. Methyl Orange Adsorption Comparison on Nanoparticles: Isotherm, Kinetics, and Thermodynamic Studies. Dyes Pigm. 2019, 160, 563–571. DOI: 10.1016/j.dyepig.2018.08.045.
  • Ren, J.; Wang, X.; Zhao, L.; Li, M.; Yang, W. Effective Removal of Dyes from Aqueous Solutions by a Gelatin Hydrogel. J. Polym. Environ. 2021, 29, 3497–3508. DOI: 10.1007/s10924-021-02136-z.
  • Coura, J. C.; Profeti, D.; Profeti, L. P. R. Eco-Friendly Chitosan/Quartzite Composite as Adsorbent for Dye Removal. Mater. Chem. Phys. 2020, 256, 123711. DOI: 10.1016/j.matchemphys.2020.123711.
  • Balarak, D.; Salari, A. A. Error Analysis of Adsorption İsotherm Models for Sulfamethazine onto Multi Walled Carbon Nanotubes. J. Pharm. Res. Int. 2019, 25, 1–10. DOI: 10.9734/jpri/2018/v25i630121.
  • Dolatabadi, M.; Mehrabpour, M.; Esfandyari, M.; Ahmadzadeh, S. Adsorption of Tetracycline Antibiotic onto Modified Zeolite: Experimental İnvestigation and Modeling. MethodsX 2020, 7, 100885. DOI: 10.1016/j.mex.2020.100885.
  • Sharma, S.; Sharma, G.; Kumar, A.; AlGarni, T. S.; Naushad, M.; ALOthman, Z. A.; Stadler, F. J. Adsorption of Cationic Dyes onto Carrageenan and İtaconic Acid-Based Superabsorbent Hydrogel: Synthesis, Characterization and İsotherm Analysis. J. Hazard. Mater. 2022, 421, 126729. DOI: 10.1016/j.jhazmat.2021.126729.
  • Mittal, H.; Kumar, V.; Ray.; S. S.; Saruchi. Adsorption of Methyl Violet from Aqueous Solution Using Gum Xanthan/Fe3O4 Based Nanocomposite Hydrogel. Int. Biol. Macromol. 2016, 89, 1–11. DOI: 10.1016/j.ijbiomac.2016.04.050.
  • Allouss, D.; Essamlali, Y.; Amadine, O.; Chakir, A.; Zahouily, M. Response Surface Methodology for Optimization of Methylene Blue Adsorption onto Carboxymethyl Cellulose-Based Hydrogel Beads: Adsorption Kinetics, İsotherm, Thermodynamics and Reusability Studies. RSC Adv. 2019, 9, 37858–37869. DOI: 10.1039/c9ra06450h.
  • Hu, X. S.; Liang, R.; Sun, G. Super-Adsorbent Hydrogel for Removal of Methylene Blue Dye from Aqueous Solution. J. Mater. Chem. A 2018, 6, 17612–17624. DOI: 10.1039/C8TA04722G.
  • Ouachtak, H.; Haouti, R. E.; Guerdaoui, A. E.; Haounati, R.; Amaterz, E.; Addi, A. A.; Akbal, F.; Taha, M. L. Experimental and Molecular Dynamics Simulation Study on the Adsorption of Rhodamine B Dye on Magnetic Montmorillonite Composite γ-Fe2O3@Mt. J. Mol. Liq. 2020, 309, 113142. DOI: 10.1016/j.molliq.2020.113142.
  • Cyril, N.; George, J. B.; Joseph, L.; Sylas, V. P. Catalytic Degradation of Methyl Orange and Selective Sensing of Mercury Ion in Aqueous Solutions Using Green Synthesized Silver Nanoparticles from the Seeds of Derris Trifoliata. J. Clust. Sci. 2019, 30, 459–468. DOI: 10.1007/s10876-019-01508-9.
  • Liu, X.; Wu, Y.; Ye, H.; Chen, J.; Xiao, W.; Zhou, W.; Garba, Z. N.; Lawan, I.; Wang, L.; Yuan, Z. Modification of Sugar-Based Carbon Using Lanthanum and Cobalt Bimetal Species for Effective Adsorption of Methyl Orange. Environ. Technol. Innov. 2021, 23, 101769. DOI: 10.1016/j.eti.2021.101769.
  • Sriram, G.; Bendre, A.; Altalhi, T.; Jung, H. Y.; Hegde, G.; Kurkuri, M. Surface engineering of Silica Based Materials with Ni–Fe Layered Double Hydroxide for the Efficient Removal of Methyl Orange: Isotherms, Kinetics, Mechanism and High Selectivity Studies. Chemosphere 2022, 287, 131976. DOI: 10.1016/j.chemosphere.2021.131976.
  • Zaghloul, A.; Benhiti, R.; Abali, M.; Ichou, A. A.; Soudani, A.; Chiban, M.; Zerbet, M.; Sinan, F. Kinetic, İsotherm, and Thermodynamic Studies of the Removal of Methyl Orange by Synthetic Clays Prepared Using Urea or Coprecipitation. Euro-Mediterr. J. Environ. Integr. 2021, 6, 1–10. DOI: 10.1007/s41207-020-00217-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.