210
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Green composites of bio-based epoxy and waste tea fiber as environmentally friendly structural materials

&
Pages 217-229 | Received 19 Dec 2022, Accepted 31 Jan 2023, Published online: 10 Feb 2023

References

  • Ge, S.; Ma, N. L.; Jiang, S.; Ok, Y. S.; Lam, S. S.; Li, C.; Sheldon, Q.; Nie, X.; Qiu, Y.; Li, D.; et al. Processed Bamboo as a Novel Formaldehyde-Free High-Performance Furniture Bio-Composite. ACS Appl. Mater. Interfaces 2020, 12, 30824–30832. DOI: 10.1021/acsami.0c07448.
  • Verma, A.; Joshi, K.; Gaur, A.; Singh, V. K. Starch-Jute Fiber Hybrid Biocomposite Modified with an Epoxy Resin Coating: Fabrication and Experimental Characterization. J. Mech. Behav. Mater. 2018, 27, 1–16. DOI: 10.1515/jmbm-2018-2006.
  • Martínez-Felipe, A.; Ek, M. Hydrothermal Ageing of Polylactide/Sisal Biocomposites. Studies of Water Absorption Behaviour and Physico-Chemical Performance. Polym. Degrad. Stab. 2014, 108, 212–222. DOI: 10.1016/j.polymdegradstab.2014.06.010.
  • Kumar, B.; Agumba, D. O.; Pham, D. H.; Latif, M.; Kim, H. C.; Alrobei, H.; Kim, J. Recent Research Progress on Lignin-Derived Resins for Natural Fiber Composite Applications. Polymers 2021, 13, 1162–1192. DOI: 10.3390/polym13071162.
  • Borah, N.; Karak, N. Tannic Acid Based Bio-Based Epoxy Thermosets: Evaluation of Thermal, Mechanical, and Biodegradable Behaviors. J. Appl. Polym. Sci. 2022, 139, 51792–51807. DOI: 10.1002/app.51792.
  • Ray, D.; Ghorui, S.; Bandyopadhyay, N. R.; Sengupta, S.; Kar, T. New Materials from Maleated Castor Oil/Epoxy Resin Blend Reinforced with Fly Ash. Ind. Eng. Chem. Res. 2012, 51, 2603–2608. DOI: 10.1021/ie201472u.
  • Ait Laaziz, S.; Hilali, E. M. Adhesion and Young’s Modulus Estimation for Chemically Treated Argan Nut Shell Particles Reinforced Poly-Lactic Acid Polymer. J. Macromol. Sci. Part B Phys. 2020, 59, 77–89. DOI: 10.1080/00222348.2019.1689651.
  • Pappu, A.; Saxena, M.; Thakur, V. K.; Sharma, A.; Haque, R. Facile Extraction, Processing and Characterization of Biorenewable Sisal Fibers for Multifunctional Applications. J. Macromol. Sci. Part A Pure Appl. Chem. 2016, 53, 424–432. DOI: 10.1080/10601325.2016.1176443.
  • Liu, W.; Chen, T.; Fei, M.; Qiu, R.; Yu, D.; Fu, T.; Qui, J. Properties of Natural Fiber-Reinforced Biobased Thermoset Biocomposites: Effects of Fiber Type and Resin Composition. Compos. Part B 2019, 171, 87–95. DOI: 10.1016/j.compositesb.2019.04.048.
  • Chowdhury, A.; Sarkar, S.; Chowdhury, A.; Bardhan, S. Tea Waste Management: A Case Study from West Bengal, India. J. Sci. Technol. 2016, 9, 1–6. DOI: 10.17485/ijst/2016/v9i42/89790.
  • Prabhu, L.; Krishnaraj, V.; Sathish, S.; Gokulkumar, S.; Karthi, N.; Rajeshkumar, L.; Balaji, D.; Vigneshkumar, N.; Elango, K. S.; Karpagam, J.; et al. Experimental Investigation on Mechanical Properties of Flax/Banana/Industrial Waste Tea Leaf Fiber Reinforced Hybrid Polymer Composites. Mater. Today: Proc. 2021, 45, 8136–8143. DOI: 10.1016/j.matpr.2021.02.111.
  • Dönmez Çavdar, A.; Kalaycioğlu, H.; Mengeloğlu, F. Tea Mill Waste Fibers Filled Thermoplastic Composites: The Effects of Plastic Type and Fiber Loading. J. Reinf. Plast. Compos. 2011, 30, 833–844. DOI: 10.1177/0731684411408752.
  • Abdul Rahman, N. H.; Chieng, B. W.; Ibrahim, N. A.; Abdul Rahman, N. Extraction and Characterization of Cellulose Nanocrystals from Tea Leaf Waste Fibers. Polymers 2017, 9, 588–597. DOI: 10.3390/polym9110588.
  • Dutta, G. K.; Karak, N. Waste Brewed Tea Leaf Derived Cellulose Nano Fiber Reinforced Fully Bio-Based Waterborne Polyester Nanocomposite as an Environmentally Benign Material. RSC Adv. 2019, 9, 20829–20840. DOI: 10.1039/c9ra02973g.
  • Prabhu, L.; Krishnaraj, V. Mechanical, Chemical and Sound Absorption Properties of Glass/Kenaf/Waste Tea Leaf Fiber-Reinforced Hybrid Epoxy Composites. J. Ind. Text 2020, 51, 1674–1700. DOI: 10.1177/1528083720957392.
  • Hussin, S. M.; Alnur, N.; Nik, A.; Bashree, M.; Bakar, A. Potential Recycling of Brewed Tea Leaf (Camellia sinensis) Waste as Natural Reinforcement in Unsaturated Polyester (UPE) Bio-Composite. Int. J. Adv. Sci. Technol. 2019, 28, 1869–1878.
  • Li, X.; Tabil, L. G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. DOI: 10.1007/s10924-006-0042-3.
  • Mishra, S.; Naik, J. B. Effect of Treatment of Maleic Anhydride on Mechanical Properties of Natural Fiber: Polystyrene Composites. Polym. Plast. Technol. Eng. 2005, 44, 663–675. DOI: 10.1081/PTE-200057814.
  • Ravikumar, P.; Rajeshkumar, G.; Manimegalai, P. Delamination and Surface Roughness Analysis of Jute/Polyester Composites Using Response Surface Methodology: Consequence of Sodium Bicarbonate Treatment. J. Ind. Text 2022, 51, 360–377. DOI: 10.1177/15280837221077040.
  • Alsaadi, M.; Erkliğ, A. UV Accelerated Aging and Sewage Sludge Ash Particle Effects on Mode I Interlaminar Fracture Properties of Glass Fiber/Epoxy Composites. Iran. Polym. J. 2021, 30, 811–820. DOI: 10.1016/j.compositesa.2018.07.038.
  • Uitterhaegen, E.; Parinet, J.; Labonne, L.; Mérian, T.; Ballas, S.; Véronèse, T.; Merah, O.; Talou, T.; Stevens, C. V.; Chabert, F.; et al. Performance, Durability and Recycling of Thermoplastic Biocomposites Reinforced with Coriander Straw. Compos. Part A Appl. Sci. Manuf. 2018, 113, 254–263. DOI: 10.1016/j.compositesa.2018.07.038.
  • Quintana, A.; Alba, J.; Rey, R.; Guill, I. Comparative Life Cycle Assessment of Gypsum Plasterboard and a New Kind of Bio-Based Epoxy Composite Containing Different Natural Fibers. J. Clean Prod. 2018, 185, 408–420. DOI: 10.1016/j.jclepro.2018.03.042.
  • Fitzgerald, A.; Proud, W.; Kandemir, A.; Murphy, R. J.; Jesson, D. A.; Trask, R. S.; Hamerton, I.; Longana, M. L. A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery. Sustainability 2021, 13, 1160–1185. DOI: 10.3390/su13031160.
  • Zhang, H.; Zhong, H.; Zhang, L.; Chen, S.; Zhao, Y.; Zhu, Y. Synthesis and Characterization of Thermosensitive Graft Copolymer of N-Isopropylacrylamide with Biodegradable Carboxymethylchitosan. Carbohydr. Polym. 2009, 77, 785–790. DOI: 10.1016/j.carbpol.2009.02.026.
  • Chowdhury, I. H.; Abdelwahab, M. A.; Misra, M.; Mohanty, A. K. Sustainable Biocomposites from Recycled Bale Wrap Plastic and Agave Fiber: Processing and Property Evaluation. ACS Omega 2021, 6, 2856–2864. DOI: 10.1021/acsomega.0c05186.
  • Muthuraj, R.; Misra, M.; Mohanty, A. K. Injection Molded Sustainable Biocomposites from Poly(Butylene Succinate) Bioplastic and Perennial Grass. ACS Sustain. Chem. Eng. 2015, 3, 2767–2776. DOI: 10.1021/acssuschemeng.5b00646.
  • Thwe, M. M.; Liao, K. Effects of Environmental Aging on the Mechanical Properties of Bamboo-Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43–52. DOI: 10.1016/S1359-835X(01)00071-9.
  • Lv, J.; Zhu, C.; Qiu, H.; Zhang, J.; Gu, C.; Feng, J. Robust Icephobic Epoxy Coating Using Maleic Anhydride as a Crosslinking Agent. Prog. Org. Coatings 2020, 142, 105561–105568. DOI: 10.1016/j.porgcoat.2020.105561.
  • Birnin-Yauri, A. U.; Ibrahim, N. A.; Zainuddin, N.; Abdan, K.; Then, Y. Y.; Chieng, B. W. Effect of Maleic Anhydride-Modified Poly (Lactic Acid) on the Properties of Its Hybrid Fiber Biocomposites. Polymers 2017, 9, 165–181. DOI: 10.3390/polym9050165.
  • Tarique, J.; Sapuan, S. M.; Khalina, A. Extraction and Characterization of a Novel Natural Lignocellulosic (Bagasse and Husk) Fiber from Arrowroot (Maranta arundinacea). J. Nat. Fibers 2021, 18, 1–17. DOI: 10.1080/15440478.2021.1993418.
  • Souza, J. L.; Santos, A. F.; Polese, L.; Crespi, M. S.; Ribeiro, C. A. Thermal Behavior of the Maleic Anhydride Modified Poly (3-Hydroxybutyrate). J. Therm. Anal. Calorim. 2007, 87, 673–677. DOI: 10.1007/s10973-006-7852-3.
  • Dorez, G.; Taguet, A.; Ferry, L. Thermal and Fire Behavior of Natural Fibers/PBS Biocomposites. Polym. Degrad. Stab. 2013, 98, 87–95. DOI: 10.1016/j.polymdegradstab.2012.10.026.
  • EL-Zayat, M. M.; Abdel-Hakim, A.; Mohamed, M. A. Effect of Gamma Radiation on the Physico Mechanical Properties of Recycled HDPE/Modified Sugarcane Bagasse Composite. J. Macromol. Sci. Part A Pure Appl. Chem. 2019, 56, 127–135. DOI: 10.1080/10601325.2018.1549949.
  • Azwa, Z. N.; Yousif, B. F. Characteristics of Kenaf Fibre/Epoxy Composites Subjected to Thermal Degradation. Polym. Degrad. Stab. 2013, 98, 2752–2769. DOI: 10.1016/j.polymdegradstab.2013.10.008.
  • Dutta, S.; Karak, N.; Baruah, S. Jute-Fiber-Reinforced Polyurethane Green Composites Based on Mesua ferrea L. Seed Oil. J. Appl. Polym. Sci. 2010, 115, 843–850. DOI: 10.1002/app.
  • Wang, B.; Hina, K.; Zou, H.; Cui, L.; Zuo, D.; Yi, C. Mechanical, Biodegradation and Morphological Properties of Sisal Fiber Reinforced Poly(Lactic Acid) Biocomposites. J. Macromol. Sci. Part B Phys. 2019, 58, 275–289. DOI: 10.1080/00222348.2019.1578486.
  • Sumesh, K. R.; Saikrishnan, G.; Pandiyan, P.; Prabhu, L.; Gokulkumar, S.; Priya, A. K.; Spatenka, P.; Krishna, S. The Influence of Different Parameters in Tribological Characteristics of Pineapple/Sisal/TiO2 Filler Incorporation. J. Ind. Text 2022, 51, 8626S–8644S. DOI: 10.1177/15280837211022614.
  • Wang, J. U. N.; Gangarao, H. O. T. A.; Liang, R.; Liu, W. Durability and Prediction Models of Fiber-Reinforced Polymer Composites under Various Environmental Conditions: A Critical Review. J. Reinf. Plast. Compos. 2016, 35, 179–211. DOI: 10.1177/0731684415610920.
  • Dutta, G. K.; Karak, N. One-Pot Synthesis of Bio-Based Waterborne Polyester as UV-Resistant Biodegradable Sustainable Material with Controlled Release Attributes. ACS Omega 2018, 3, 16812–16822. DOI: 10.1021/acsomega.8b02790.
  • Karakuzu, R.; Kanlioglu, H.; Deniz, M. E. Environmental Effects on Mechanical Properties of Glass-Epoxy Composites. Mater. Test 2014, 56, 355–361. DOI: 10.3139/120.110576.
  • Cysne Barbosa, A. P.; Fulco, A. P. P.; Guerra, E. S. S.; Arakaki, F. K.; Tosatto, M.; Costa, M. C. B.; Melo, J. D. D. Accelerated Aging Effects on Carbon Fiber/Epoxy Composites. Compos. Part B Eng. 2017, 110, 298–306. DOI: 10.1016/j.compositesb.2016.11.004.
  • Yang, Y.; Xian, G.; Li, H.; Sui, L. Thermal Aging of an Anhydride-Cured Epoxy Resin. Polym. Degrad. Stab. 2015, 118, 111–119. DOI: 10.1016/j.polymdegradstab.2015.04.017.
  • Klapiszewski, Ł.; Podkościelna, B.; Goliszek, M.; Kubiak, A.; Młynarczyk, K.; Jesionowski, T. Synthesis, Characterization and Aging Tests of Functional Rigid Polymeric Biocomposites with Kraft Lignin. Int. J. Biol. Macromol. 2021, 178, 344–353. DOI: 10.1016/j.ijbiomac.2021.02.193.
  • Ventura, H.; Claramunt, J.; Rodríguez-Pérez, M. A.; Ardanuy, M. Effects of Hydrothermal Aging on the Water Uptake and Tensile Properties of PHB/Flax Fabric Biocomposites. Polym. Degrad. Stab. 2017, 142, 129–138. DOI: 10.1016/j.polymdegradstab.2017.06.003.
  • Chen, D.; Li, J.; Ren, J. Influence of Fiber Surface-Treatment on Interfacial Property of Poly(l-Lactic Acid)/Ramie Fabric Biocomposites under UV-Irradiation Hydrothermal Aging. Mater. Chem. Phys. 2011, 126, 524–531. DOI: 10.1016/j.matchemphys.2011.01.035.
  • Siakeng, R.; Jawaid, M.; Asim, M.; Siengchin, S. Accelerated Weathering and Soil Burial Effect on Biodegradability, Colour and Texture of Coir/Pineapple Leaf Fibres/PLA Biocomposites. Polymers 2020, 12, 458–473. DOI: 10.3390/polym12020458.
  • EL-Zayata, M. M.; Mohameda, R. M.; Raslan, H. A. Evaluation of Surface Treatment and Gamma Irradiation on the Performance of Palm Fiber/Natural Rubber Biocomposites. J. Macromol. Sci. Part A Pure Appl. Chem. 2020, 57, 344–354. DOI: 10.1080/10601325.2019.1698964.
  • Dutta, S.; Karak, N.; Saikia, J. P.; Konwar, B. K. Biodegradation of Epoxy and MF Modified Polyurethane Films Derived from a Sustainable Resource. J. Polym. Environ. 2010, 18, 167–176. DOI: 10.1007/s10924-010-0161-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.