269
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Activated carbon-decorated polyacrylonitrile fibers and their porphyrin-immobilized composites for removal of methylene blue dye and Ciprofloxacin in water

, & ORCID Icon
Pages 192-206 | Received 04 Oct 2022, Accepted 15 Feb 2023, Published online: 02 Mar 2023

References

  • Abd El Khalk, A. A.; Betiha, M. A.; Mansour, A. S.; Abd El Wahed, M. G.; Al-Sabagh, A. M. High Degradation of Methylene Blue Using a New Nanocomposite Based on Zeolitic Imidazolate Framework-8. ACS Omega 2021, 6, 26210–26220. DOI: 10.1021/acsomega.1c03195.
  • Fernández-Pérez, A.; Marbán, G. Visible Light Spectroscopic Analysis of Methylene Blue in Water; What Comes after Dimer? ACS Omega 2020, 5, 29801–29815. DOI: 10.1021/acsomega.0c03830.
  • Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile Finishing Dyes and Their Impact on Aquatic Environs. Heliyon 2019, 5, e02711. DOI: 10.1016/j.heliyon.2019.e02711.
  • Bernal, V.; Giraldo, L.; Moreno-Piraján, J. C. Adsorption of Pharmaceutical Aromatic Pollutants on Heat-Treated Activated Carbons: Effect of Carbonaceous Structure and the Adsorbent–Adsorbate Interactions. ACS Omega 2020, 5, 15247–15256. DOI: 10.1021/acsomega.0c01288.
  • Diwan, V.; Tamhankar, A. J.; Khandal, R. K.; Sen, S.; Aggarwal, M.; Marothi, Y.; Iyer, R. V.; Sundblad-Tonderski, K.; Stålsby- Lundborg, C. Antibiotics and Antibiotic-Resistant Bacteria in Waters Associated with a Hospital in Ujjain, India. BMC Public Health 2010, 10, 414. DOI: 10.1186/1471-2458-10-414.
  • Bouarroudj, T.; Aoudjit, L.; Djahida, L.; Zaidi, B.; Ouraghi, M.; Zioui, D.; Mahidine, S.; Shekhar, C.; Bachari, K. Photodegradation of Tartrazine Dye Favored by Natural Sunlight on Pure and (Ce, Ag) Co-Doped ZnO Catalysts. Water Sci. Technol. 2021, 83, 2118–2134. DOI: 10.2166/wst.2021.106.
  • La, D.; Tran, C.; Hoang, N. T.; Ngoc, M. D. D.; Nguyen, T. H.; Vo, H.; Ho, P.; Nguyen, T. A.; Bhosale, S. V.; Nguyen, X.; et al. Efficient Photocatalysis of Organic Dyes under Simulated Sunlight Irradiation by a Novel Magnetic CuFe2O4@Porphyrin Nanofiber Hybrid Material Fabricated via Self-Assembly. Fuel 2020, 281, 118655. DOI: 10.1016/j.fuel.2020.118655.
  • Ohko, Y.; Iuchi, K.-I.; Niwa, C.; Tatsuma, T.; Nakashima, T.; Iguchi, T.; Kubota, Y.; Fujishima, A. 17 Beta-Estradiol Degradation by TiO2 Photocatalysis as a Means of Reducing Estrogenic Activity. Environ. Sci. Technol. 2002, 36, 4175–4181. DOI: 10.1021/es011500a.
  • de Andrade, J. R.; Oliveira, M. F.; da Silva, M. G. C.; Vieira, M. G. A. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018, 57, 3103–3127. DOI: 10.1021/acs.iecr.7b05137.
  • Zeng, S.; Tan, J.; Xu, X.; Huang, X.; Zhou, L. Facile Synthesis of Amphiphilic Peach Gum Polysaccharide as a Robust Host for Efficient Encapsulation of Methylene Blue and Methyl Orange Dyes from Water. Int. J. Biol. Macromol. 2020, 154, 974–980. DOI: 10.1016/j.ijbiomac.2020.03.151.
  • Velasco, L. F.; Parra, J. B.; Ania, C. O. Role of Activated Carbon Features on the Photocatalytic Degradation of Phenol. Appl. Surf. Sci. 2010, 256, 5254–5258. DOI: 10.1016/j.apsusc.2009.12.113.
  • Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile Synthesis of Low-Cost Magnetic Biosorbent from Peach Gum Polysaccharide for Selective and Efficient Removal of Cationic Dyes. Int. J. Biol. Macromol. 2018, 107, 1871–1878. DOI: 10.1016/j.ijbiomac.2017.10.058.
  • Bernal, V.; Giraldo, L.; Moreno-Piraján, J. C. Insight into Adsorbate–Adsorbent Interactions between Aromatic Pharmaceutical Compounds and Activated Carbon: Equilibrium Isotherms and Thermodynamic Analysis. Adsorption 2020, 26, 153–163. DOI: 10.1007/s10450-019-00057-x.
  • Luo, X.; Zhang, L. High Effective Adsorption of Organic Dyes on Magnetic Cellulose Beads Entrapping Activated Carbon. J. Hazard Mater. 2009, 171, 340–347. DOI: 10.1016/j.jhazmat.2009.06.009.
  • Asiltürk, M.; Şener, Ş. TiO2-Activated Carbon Photocatalysts: Preparation, Characterization and Photocatalytic Activities. Chem. Eng. J. 2012, 180, 354–363. DOI: 10.1016/j.cej.2011.11.045.
  • Triquet, T.; Tendero, C.; Latapie, L.; Richard, R.; Andriantsiferana, C, Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France The Use of Composite TiO2/Activated Carbon Fibers as a Photocatalyst in a Sequential Adsorption/Photocatalysis Process for the Elimination of Ciprofloxacin. CR 2022, 2, 1–1. DOI: 10.21926/cr.2201007.
  • Mohamed, A.; El-Sayed, R.; Osman, T. A.; Toprak, M. S.; Muhammed, M.; Uheida, A. Composite Nanofibers for Highly Efficient Photocatalytic Degradation of Organic Dyes from Contaminated Water. Environ. Res. 2016, 145, 18–25. DOI: 10.1016/j.envres.2015.09.024.
  • Li, K.; Li, K.; Wang, C.; Ning, P.; Sun, X.; Song, X.; Wang, Y. Preparation of Polyacrylonitrile-Based Activated Carbon Fiber for CS2 Adsorption. Res. Chem. Intermed. 2020, 46, 3459–3476. DOI: 10.1007/s11164-020-04156-1.
  • Yue, Y.; Wang, Y.; Qu, C.; Xu, X. Modification of Polyacrylonitrile-Based Activated Carbon Fibers and Their p-Nitrophenol Adsorption and Degradation Properties. J. Environ. Chem. Eng. 2021, 9, 105390. DOI: 10.1016/j.jece.2021.105390.
  • Ibupoto, A. S.; Qureshi, U. A.; Ahmed, F.; Khatri, Z.; Khatri, M.; Maqsood, M.; Brohi, R. Z.; Kim, I. S. Reusable Carbon Nanofibers for Efficient Removal of Methylene Blue from Aqueous Solution. Chem. Eng. Res. Des. 2018, 136, 744–752. DOI: 10.1016/j.cherd.2018.06.035.
  • de Oliveira, J. B.; Guerrini, L. M.; Oishi, S. S.; de Oliveira Hein, L. R.; dos Santos Conejo, L.; Rezende, M. C.; Botelho, E. C. Carbon Nanofibers Obtained from Electrospinning Process. Mater. Res. Express 2018, 5, 25602. DOI: 10.1088/2053-1591/aaa467.
  • Fennessey, S. F. Continuous Carbon Nanofibers Prepared from Electrospun Polyacrylonitrile Precursor Fibers, Ph.D. Dissertation1896. – February 2014, University of Massachusetts Amherst, 2006. DOI: 10.7275/0KE2-KB77.
  • Li, X.; Xu, T.; Liang, Z.; Amar, V. S.; Huang, R.; Maddipudi, B. K.; Shende, R. V.; Fong, H. Simultaneous Electrospinning and Electrospraying for the Preparation of a Precursor Membrane Containing Hydrothermally Generated Biochar Particles to Produce the Value-Added Product of Carbon Nanofibrous Felt. Polymers 2021, 13, 676. DOI: 10.3390/polym13050676.
  • Zong, Y.; Ma, S.; Gao, J.; Xu, M.; Xue, J.; Wang, M. Synthesis of Porphyrin Zr-MOFs for the Adsorption and Photodegradation of Antibiotics under Visible Light. ACS Omega 2021, 6, 17228–17238. DOI: 10.1021/acsomega.1c00919.
  • Zhao, P.; Huang, Y.; Chen, J.; Shao, S.; Miao, H.; Xia, J.; Jia, C.; Hua, M. Preparation of Meso-Tetraphenyl Porphyrin Modified Defect-Rich BiOCl with Enhanced Visible-Light Photocatalytic Activity for Antibiotic Degradation and Mechanism Insight. J. Photochem. Photobiol. 2020, 3-4, 100014. DOI: 10.1016/j.jpap.2020.100014.
  • Min, K. S.; Kumar, R. S.; Lee, J. H.; Kim, K. S.; Lee, S. G.; Son, Y.-A. Synthesis of New TiO2/Porphyrin-Based Composites and Photocatalytic Studies on Methylene Blue Degradation. Dyes Pigm. 2019, 160, 37–47. DOI: 10.1016/j.dyepig.2018.07.045.
  • Gholamrezapor, E.; Eslami, A. Photocatalytic Degradation of Methylene Blue in Aqueous Solution by Magnetic ZnMn2O4@Copper Porphyrin Nanocomposite. J. Iran Chem. SOC 2022, 19, 1071–1080. DOI: 10.1007/s13738-021-02364-z.
  • Geçgel, Ü.; Özcan, G.; Gürpınar, G. Ç. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum Sativum). J. Chem. 2013, 2013, e614083–9. DOI: 10.1155/2013/614083.
  • Mohy Eldin, M. S.; El-Sakka, S. A.; El-Masry, M. M.; Abdel-Gawad, I. I.; Garybe, S. S. Methylene Blue Removal by Nano-Poly Acrylonitrile Particles: Modelling and Formulation Studies. DWT 2020, 178, 322–336. DOI: 10.5004/dwt.2020.24967.
  • Soberman, M. J.; Farnood, R. R.; Tabe, S. Functionalized Powdered Activated Carbon Electrospun Nanofiber Membranes for Adsorption of Micropollutants. Sep. Purif. Technol 2020, 253, 117461. DOI: 10.1016/j.seppur.2020.117461.
  • Bankole, O. M.; Britton, J.; Nyokong, T. Photophysical and Non-Linear Optical Behavior of Novel Tetra Alkynyl Terminated Indium Phthalocyanines: Effects of the Carbon Chain Length. Polyhedron 2015, 88, 73–80. DOI: 10.1016/j.poly.2014.12.020.
  • Cecioni, S.; Faure, S.; Darbost, U.; Bonnamour, I.; Parrot-Lopez, H.; Roy, O.; Taillefumier, C.; Wimmerová, M.; Praly, J.-P.; Imberty, A.; et al. Selectivity among Two Lectins: Probing the Effect of Topology, Multivalency and Flexibility of “Clicked” Multivalent Glycoclusters. Chemistry 2011, 17, 2146–2159. DOI: 10.1002/chem.201002635.
  • Oyim, J.; Amuhaya, E.; Matshitse, R.; Mack, J.; Nyokong, T. Integrated Photocatalyst Adsorbents Based on Porphyrin Anchored to Activated Carbon Granules for Water Treatment. Carbon Trends 2022, 8, 100191. DOI: 10.1016/j.cartre.2022.100191.
  • Hou, J.; Liu, Y.; Wen, S.; Li, W.; Liao, R.; Wang, L. Sorghum-Waste-Derived High-Surface Area KOH-Activated Porous Carbon for Highly Efficient Methylene Blue and Pb(II) Removal. ACS Omega 2020, 5, 13548–13556. DOI: 10.1021/acsomega.9b04452.
  • Liu, Y.; Ke, C.-F.; Zhang, H.-Y.; Cui, J.; Ding, F. Complexation-Induced Transition of Nanorod to Network Aggregates: Alternate Porphyrin and Cyclodextrin Arrays. J. Am. Chem. Soc. 2008, 130, 600–605. DOI: 10.1021/ja075981v.
  • Mack, J.; Wildervanck, M.; Nyokong, T. TD-DFT Calculations and MCD Spectroscopy of Porphyrin and Phthalocyanine Analogues: Rational Design of Photosensitizers for PDT and NIR Region Sensor Applications. Turk. J. Chem. 2014, 38, 1013–1026. DOI: 10.3906/kim-1406-32.
  • Li, L.; Hu, J.; Shi, X.; Ruan, W.; Luo, J.; Wei, X. Theoretical Studies on Structures, Properties and Dominant Debromination Pathways for Selected Polybrominated Diphenyl Ethers. Int. J. Mol. Sci. 2016, 17, 927. DOI: 10.3390/ijms17060927.
  • Zheng, W.; Li, X.; Chen, H.; Xie, Q.; Li, H. Synthesis and Photophysical Properties of Porphyrin–Arylimidazole Heterodyads. J. Heterocycl. Chem. 2017, 54, 1522–1528. DOI: 10.1002/jhet.2739.
  • Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Comprehensive Review of Photophysical Parameters (ε, Φf, Τs) of Tetraphenylporphyrin (H2TPP) and Zinc Tetraphenylporphyrin (ZnTPP) – Critical Benchmark Molecules in Photochemistry and Photosynthesis. J. Photochem. Photobiol. C Photochem. Rev. 2021, 46, 100401. DOI: 10.1016/j.jphotochemrev.2020.100401.
  • Bhaumik, J.; Weissleder, R.; McCarthy, J. R. Synthesis and Photophysical Properties of Sulfonamidophenyl Porphyrins as Models for Activatable Photosensitizers. J. Org. Chem. 2009, 74, 5894–5901. DOI: 10.1021/jo900832y.
  • Ormond, A. B.; Freeman, H. S. Effects of Substituents on the Photophysical Properties of Symmetrical Porphyrins. Dyes Pigm. 2013, 96, 440–448. DOI: 10.1016/j.dyepig.2012.09.011.
  • Steinebrunner, D.; Schnurpfeil, G.; Doebler, H. H.; Tapia Burgos, J. A.; Wöhrle, D.; Wittstock, A. A Versatile Heterogeneous Photocatalyst: Nanoporous Gold Powder Modified with a Zinc(II) Phthalocyanine Derivative for Singlet Oxygen [4 + 2] Cycloadditions. Photochem. Photobiol. Sci. 2021, 20, 547–558. DOI: 10.1007/s43630-021-00037-7.
  • Lo, S.-F.; Wang, S.-Y.; Tsai, M.-J.; Lin, L.-D. Adsorption Capacity and Removal Efficiency of Heavy Metal Ions by Moso and Ma Bamboo Activated Carbons. Chem. Eng. Res. Des. 2012, 90, 1397–1406. DOI: 10.1016/j.cherd.2011.11.020.
  • Milošević, M. D.; Logar, M. M.; Poharc-Logar, A. V.; Jakšić, N. L. Orientation and Optical Polarized Spectra (380–900 Nm) of Methylene Blue Crystals on a Glass Surface. Int. J. Spectrosc. 2013, Article ID 923739, 1–6. DOI: 10.1155/2013/923739.
  • Degen, I. A. Detection of the Methoxyl Group by Infrared Spectroscopy. Appl. Spectrosc. 1968, 22, 164–166. DOI: 10.1366/000370268774383444.
  • Huang, X.; Yang, L.; Emanuelsson, R.; Bergquist, J.; Strømme, M.; Sjödin, M.; Gogoll, A. A Versatile Route to Polythiophenes with Functional Pendant Groups Using Alkyne Chemistry. Beilstein J. Org. Chem. 2016, 12, 2682–2688. DOI: 10.3762/bjoc.12.265.
  • Gouterman, M. Spectra of Porphyrins. J. Mol. Spectrosc. 1961, 6, 138–163. DOI: 10.1016/0022-2852(61)90236-3.
  • Gouterman, M.; Wagnière, G. H.; Snyder, L. C. Spectra of Porphyrins: Part II. Four Orbital Model. J. Mol. Spectrosc. 1963, 11, 108–127.
  • Michl, J. Magnetic Circular Dichroism of Aromatic Molecules. Tetrahedron 1984, 40, 3845–3934. DOI: 10.1016/S0040-4020(01)99999-5.
  • Shimizu, Y.; Azumi, T. Mechanism of External Heavy Atom Effect on Intersystem Crossing in Fluid Solutions. Analysis Based on Fluorescence Decay Data. J. Phys. Chem 1982, 86, 22–26. DOI: 10.1021/j100390a006.
  • Frühbeißer, S.; Mariani, G.; Gröhn, F. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution. Polymers 2016, 8, 180. DOI: 10.3390/polym8050180.
  • Pineiro, M.; Carvalho, A. L.; Pereira, M. M.; Gonsalves, A. M. d R.; Arnaut, L. G.; Formosinho, S. J. Photoacoustic Measurements of Porphyrin Triplet-State Quantum Yields and Singlet-Oxygen Efficiencies. Chem. Eur. J. 1998, 4, 2299–2307. DOI: 10.1002/(SICI)1521-3765(19981102)4:11 < 2299::AID-CHEM2299 > 3.0.CO;2-H.
  • Morales, M. S.; Ogale, A. A. Wet-Spun, Photoinitiator-Modified Polyacrylonitrile Precursor Fibers: UV-Assisted Stabilization. J. Appl. Polym. Sci. 2013, 130, 2494–2503. DOI: 10.1002/app.39442.
  • Huang, H.-B.; Wang, Y.; Cai, F.-Y.; Jiao, W.-B.; Zhang, N.; Liu, C.; Cao, H.-L.; Lü, J. Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Front. Chem. 2017, 5, 123. DOI: 10.3389/fchem.2017.00123.
  • Jurkiewicz, K.; Pawlyta, M.; Burian, A. Structure of Carbon Materials Explored by Local Transmission Electron Microscopy and Global Powder Diffraction Probes. C 2018, 4, 68. DOI: 10.3390/c4040068.
  • Sevilla, M.; Fuertes, A. B. Fabrication of Porous Carbon Monoliths with a Graphitic Framework. Carbon, 2013, 56, 155–166. DOI: 10.1016/j.carbon.2012.12.090.
  • Dai, C.; Wan, J.; Yang, J.; Qu, S.; Jin, T.; Ma, F.; Shao, J. H3PO4 Solution Hydrothermal Carbonization Combined with KOH Activation to Prepare Argy Wormwood-Based Porous Carbon for High-Performance Supercapacitors. Appl. Surf. Sci. 2018, 444, 105–117. DOI: 10.1016/j.apsusc.2018.02.261.
  • Park, S.; Yoo, S. H.; Kang, H. R.; Jo, S. M.; Joh, H.-I.; Lee, S. Comprehensive Stabilization Mechanism of Electron-Beam Irradiated Polyacrylonitrile Fibers to Shorten the Conventional Thermal Treatment. Sci. Rep. 2016, 6, 27330. DOI: 10.1038/srep27330.
  • Karacan, I.; Erdogan, G. The Influence of Thermal Stabilization Stage on the Molecular Structure of Polyacrylonitrile Fibers Prior to the Carbonization Stage. Fibers Polym. 2012, 13, 295–302. DOI: 10.1007/s12221-012-0295-5.
  • Loginova, E. V.; Mikheev, I. V.; Volkov, D. S.; Proskurnin, M. A. Quantification of Copolymer Composition (Methyl Acrylate and Itaconic Acid) in Polyacrylonitrile Carbon-Fiber Precursors by FTIR-Spectroscopy. Anal. Methods 2016, 8, 371–380. DOI: 10.1039/C5AY02264A.
  • Huang, Y. S.; Koenig, J. L. Raman Spectra of Polyacrylonitrile. Appl. Spectrosc. 1971, 25, 620–622.
  • Jin, Y.; Kotula, A. P.; Snyder, C. R.; Hight Walker, A. R.; Migler, K. B.; Lee, Y. J. Raman Identification of Multiple Melting Peaks of Polyethylene. Macromolecules 2017, 50, 6174–6183. DOI: 10.1021/acs.macromol.7b01055.
  • Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P. Raman Spectroscopy for the Investigation of Carbon-Based Black Pigments: Investigation of Carbon-Based Black Pigments. J. Raman Spectrosc. 2015, 46, 1003–1015. DOI: 10.1002/jrs.4715.
  • Chen, Z. Y.; Zhao, J. P.; Yano, T.; Ooie, T.; Yoneda, M.; Sakakibara, J. Observation of Sp3 Bonding in Tetrahedral Amorphous Carbon Using Visible Raman Spectroscopy. J. Appl. Phys. 2000, 88, 2305–2308. DOI: 10.1063/1.1288160.
  • An, J.-H.; El-Said, W. A.; Yea, C.-H.; Kim, T.-H.; Choi, J.-W. Surface-Enhanced Raman Scattering of Dopamine on Self-Assembled Gold Nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 4424–4429. DOI: 10.1166/jnn.2011.3688.
  • Spiro, T. G.; Strekas, T. C. Resonance Raman Spectra of Heme Proteins. Effects of Oxidation and Spin State. J. Am. Chem. Soc. 1974, 96, 338–345. DOI: 10.1021/ja00809a004.
  • Parthasarathi, N.; Hansen, C.; Yamaguchi, S.; Spiro, T. G. Metalloporphyrin Core Size Resonance Raman Marker Bands Revisited: Implications for the Interpretation of Hemoglobin Photoproduct Raman Frequencies. J. Am. Chem. Soc. 1987, 109, 3865–3871. DOI: 10.1021/ja00247a009.
  • Castro, J. P.; Nobre, J. R. C.; Bianchi, M. L.; Trugilho, P. F.; Napoli, A.; Chiou, B.-S.; Williams, T. G.; Wood, D. F.; Avena-Bustillos, R. J.; Orts, W. J.; et al. Activated Carbons Prepared by Physical Activation from Different Pretreatments of Amazon Piassava Fibers. J. Nat. Fibers 2019, 16, 961–976. DOI: 10.1080/15440478.2018.1442280.
  • Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A. A.; Amin, M. O.; Madkour, M. The Effect of Surface Charge on Photocatalytic Degradation of Methylene Blue Dye Using Chargeable Titania Nanoparticles. Sci. Rep. 2018, 8, 7104. DOI: 10.1038/s41598-018-25673-5.
  • Atta, A. M.; Moustafa, Y. M.; Al-Lohedan, H. A.; Ezzat, A. O.; Hashem, A. I. Methylene Blue Catalytic Degradation Using Silver and Magnetite Nanoparticles Functionalized with a Poly(Ionic Liquid) Based on Quaternized Dialkylethanolamine with 2-Acrylamido-2-Methylpropane Sulfonate-Co-Vinylpyrrolidone. ACS Omega 2020, 5, 2829–2842. DOI: 10.1021/acsomega.9b03610.
  • Yang, C.; Zhang, M.; Dong, W.; Cui, G.; Ren, Z.; Wang, W. Highly Efficient Photocatalytic Degradation of Methylene Blue by PoPD/TiO2 Nanocomposite. PLoS One 2017, 12, e0174104. DOI: 10.1371/journal.pone.0174104.
  • Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic Degradation Pathway of Methylene Blue in Water. Appl. Catal. B Environ. 2001, 31, 145–157. DOI: 10.1016/S0926-3373(00)00276-9.
  • Zhu, K.; Fu, H.; Zhang, J.; Lv, X.; Tang, J.; Xu, X. Studies on Removal of NH4+-N from Aqueous Solution by Using the Activated Carbons Derived from Rice Husk. Biomass Bioenergy 2012, 43, 18–25. DOI: 10.1016/j.biombioe.2012.04.005.
  • Ota, K.; Amano, Y.; Aikawa, M.; Machida, M. Removal of Nitrate Ions from Water by Activated Carbons (ACs)—Influence of Surface Chemistry of ACs and Coexisting Chloride and Sulfate Ions. Appl. Surf. Sci. 2013, 276, 838–842. DOI: 10.1016/j.apsusc.2013.03.053.
  • Salman, M. Removal of Sulfate from Waste Water by Activated Carbon. Al-Khawarizmi Eng. J. 2009, 5, 72–76.
  • Acevedo, S.; Giraldo, L.; Moreno-Piraján, J. C. Adsorption of CO2 on Activated Carbons Prepared by Chemical Activation with Cupric Nitrate. ACS Omega 2020, 5, 10423–10432. DOI: 10.1021/acsomega.0c00342.
  • Babić, S.; Periša, M.; Škorić, I. Photolytic Degradation of Norfloxacin, Enrofloxacin and Ciprofloxacin in Various Aqueous Media. Chemosphere 2013, 91, 1635–1642. DOI: 10.1016/j.chemosphere.2012.12.072.
  • Challis, J. K.; Hanson, M. L.; Friesen, K. J.; Wong, C. S. A Critical Assessment of the Photodegradation of Pharmaceuticals in Aquatic Environments: Defining Our Current Understanding and Identifying Knowledge Gaps. Environ. Sci. Process. Impacts 2014, 16, 672–696. DOI: 10.1039/C3EM00615H.
  • Wang, J.; Svoboda, L.; Němečková, Z.; Sgarzi, M.; Henych, J.; Licciardello, N.; Cuniberti, G. Enhanced Visible-Light Photodegradation of Fluoroquinolone-Based Antibiotics and E. Coli Growth Inhibition Using Ag–TiO2 Nanoparticles. RSC Adv. 2021, 11, 13980–13991. DOI: 10.1039/D0RA10403E.
  • Mukherjee, I.; Cilamkoti, V.; Dutta, R. K. Sunlight-Driven Photocatalytic Degradation of Ciprofloxacin by Carbon Dots Embedded in ZnO Nanostructures. ACS Appl. Nano Mater. 2021, 4, 7686–7697. DOI: 10.1021/acsanm.1c00883.
  • Bayomie, O. S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M. M. H. Novel Approach for Effective Removal of Methylene Blue Dye from Water Using Fava Bean Peel Waste. Sci. Rep. 2020, 10, 7824. DOI: 10.1038/s41598-020-64727-5.
  • Mohamed, A.; Yousef, S.; Ali Abdelnaby, M.; Osman, T. A.; Hamawandi, B.; Toprak, M. S.; Muhammed, M.; Uheida, A. Photocatalytic Degradation of Organic Dyes and Enhanced Mechanical Properties of PAN/CNTs Composite Nanofibers. Sep. Purif. Technol. 2017, 182, 219–223. DOI: 10.1016/j.seppur.2017.03.051.
  • Ademola Bode-Aluko, C.; Pereao, O.; Kyaw, H. H.; Al-Naamani, L.; Al-Abri, M. Z.; Tay Zar Myint, M.; Rossouw, A.; Fatoba, O.; Petrik, L.; Dobretsov, S. Photocatalytic and Antifouling Properties of Electrospun TiO2 Polyacrylonitrile Composite Nanofibers under Visible Light. Mater. Sci. Eng. B 2021, 264, 114913. DOI: 10.1016/j.mseb.2020.114913.
  • Albiss, B.; Abu-Dalo, M. Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability 2021, 13, 4729. DOI: 10.3390/su13094729.
  • Khalil, A.; Nasser, W. S.; Osman, T. A.; Toprak, M. S.; Muhammed, M.; Uheida, A. Surface Modified of Polyacrylonitrile Nanofibers by TiO2/MWCNT for Photodegradation of Organic Dyes and Pharmaceutical Drugs under Visible Light Irradiation. Environ. Res. 2019, 179, 108788. DOI: 10.1016/j.envres.2019.108788.
  • Chen, Y.; Huang, Z.-H.; Yue, M.; Kang, F. Integrating Porphyrin Nanoparticles into a 2D Graphene Matrix for Free-Standing Nanohybrid Films with Enhanced Visible-Light Photocatalytic Activity. Nanoscale 2014, 6, 978–985. DOI: 10.1039/C3NR04908F.
  • La, D. D.; Hangarge, R. V. V.; Bhosale, S.; Ninh, H. D.; Jones, L. A.; Bhosale, S. V. Arginine-Mediated Self-Assembly of Porphyrin on Graphene: A Photocatalyst for Degradation of Dyes. Appl. Sci. 2017, 7, 643. DOI: 10.3390/app7060643.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.