147
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

PIB-based block copolymer with a segment having alternating sequence of leucine and alanine side-chain pendants

, , , &
Pages 161-170 | Received 02 Feb 2023, Accepted 03 Mar 2023, Published online: 16 Mar 2023

References

  • Staudinger, H. Macromolecular Chemistry. Nobel Lecture, 1953, pp 397–419.
  • Srichan, S.; Mutlu, H.; Badi, N.; Lutz, J. F. Precision PEGylated Polymers Obtained by Sequence-Controlled Copolymerization and Postpolymerization Modification. Angew. Chem. Int. Ed. Engl. 2014, 53, 9231–9235. DOI: 10.1002/anie.201403799.
  • Mallakpour, S.; Dinari, M. Progress in Synthetic Polymers Based on Natural Amino Acids. J. Macromol. Sci., Part A: Pure Appl. Chem. 2011, 48, 644–679. DOI: 10.1080/15226514.2011.586289.
  • Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-Made Dual pH-Sensitive Polymer-Doxorubicin Nanoparticles for Efficient Anticancer Drug Delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563. DOI: 10.1021/ja207150n.
  • Yamano, T.; Higashi, N.; Koga, T. Unique Self-Assembly of Sequence-Controlled Amino Acid Derived Vinyl Polymer with Gradient Thermoresponsiveness along a Chain. Langmuir 2020, 36, 6550–6556. DOI: 10.1021/acs.langmuir.0c01036.
  • Huang, J.; Turner, S. R. Recent Advances in Alternating Copolymers: The Synthesis, Modification, and Applications of Precision Polymers. Polymer 2017, 116, 572–586. DOI: 10.1016/j.polymer.2017.01.020.
  • Ouchi, M.; Liu, D. R.; Sawamoto, M.; Lutz, J. F. Sequence Controlled Polymers. Science 2013, 341, 1238149–1238149. DOI: 10.1126/science.1238149.
  • Lutz, J. F.; Schmidt, B. V. K. J.; Pfeifer, S. Tailored Polymer Microstructures Prepared by Atom Transfer Radical Copolymerization of Styrene and N-Substituted Maleimides. Macromol. Rapid Commun. 2011, 32, 127–135. DOI: 10.1002/marc.201000664.
  • Goswami, K. G.; Saha, B.; De, P. Alternating Copolymers with Glycyl-Glycine and Alanyl-Alanine Side-Chain Pendants: Synthesis, Characterization and Solution Properties. J. Macromol. Sci., Part A: Pure Appl. Chem. 2020, 57, 675–683. DOI: 10.1080/10601325.2020.1759433.
  • Ramakers, B. E. I.; van Hest, J. C. M.; Lowik, D. W. P. M. Molecular Tools for the Construction of Peptide-Based Materials. Chem. Soc. Rev. 2014, 43, 2743–2756. DOI: 10.1039/c3cs60362h
  • Deming, T. J. Synthetic Polypeptides for Biomedical Applications. Prog. Polym. Sci. 2007, 32, 858–875. DOI: 10.1016/j.progpolymsci.2007.05.010.
  • Joyce, K.; Fabra, G. T.; Bozkurt, Y.; Pandit, A. Bioactive Potential of Natural Biomaterials: Identification, Retention and Assessment of Biological Properties. Signal Transduct. Target Ther. 2021, 6, 122–148. DOI: 10.1038/s41392-021-00512-8.
  • Bechaux, J.; Gatellier, P.; Page, J. K. L.; Drillet, Y.; Sante-Lhoutellier, V. A Comprehensive Review of Bioactive Peptides Obtained from Animal Byproducts and Their Applications. Food Funct. 2019, 10, 6244–6266. DOI: 10.1039/C9FO01546A.
  • Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H. A.; Zhong, Z. Functional Polypeptide and Hybrid Materials: Precision Synthesis via α-Amino Acid N-Carboxyanhydride Polymerization and Emerging Biomedical Applications. Prog. Polym. Sci. 2014, 39, 330–364. 2013.10.008 DOI: 10.1016/j.progpolymsci.
  • Mukherjee, I.; Ghosh, A.; Bhadury, P.; De, P. Leucine-Based Polymer Architecture-Induced Antimicrobial Properties and Bacterial Cell Morphology Switching. ACS Omega 2018, 3, 769–780. DOI: 10.1021/acsomega.7b01674.
  • Orbach, R.; Mironi-Harpaz, I.; Adler-Abramovich, L.; Mossou, E.; Mitchell, E. P.; Forsyth, V. T.; Gazit, E.; Seliktar, D. The Rheological and Structural Properties of Fmoc-Peptide-Based Hydrogels: The Effect of Aromatic Molecular Architecture on Self-Assembly and Physical Characteristics. Langmuir 2012, 28, 2015–2022. DOI: 10.1021/la204426q.
  • Wang, S.; Tao, Y.; Wang, J.; Tao, Y.; Wang, X. A Versatile Strategy for the Synthesis of Sequence-Defined Peptoids with Side-Chain and Backbone Diversity via Amino Acid Building Blocks. Chem. Sci. 2019, 10, 1531–1538. DOI: 10.1039/C8SC03415J.
  • Yuan, Y.; Zhao, L.; Shen, C.; He, Y.; Yang, F.; Zhang, G.; Jia, M.; Zeng, R.; Li, C.; Qiao, R. Reactive Oxygen Species-Responsive Amino Acid-Based Polymeric Nanovehicles for Tumor-Selective Anticancer Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110159–110168. DOI: 10.1016/j.msec.2019.110159.
  • Saha, B.; Choudhury, N.; Seal, S.; Ruidas, B.; De, P. Aromatic Nitrogen Mustard-Based Autofluorescent Amphiphilic Brush Copolymer as pH-Responsive Drug Delivery Vehicle. Biomacromolecules 2019, 20, 546–557. DOI: 10.1021/acs.biomac.8b01468.
  • Lashuel, H. A.; LaBrenz, S. R.; Woo, L.; Serpell, L. C.; Kelly, J. W. Protofilaments, Filaments, Ribbons, and Fibrils from Peptidomimetic Self-Assembly: Implications for Amyloid Fibril Formation and Materials Science. J. Am. Chem. Soc. 2000, 122, 5262–5277. DOI: 10.1021/ja9937831.
  • Uesaka, A.; Ueda, M.; Makino, A.; Imai, T.; Sugiyama, J.; Kimura, S. Morphology Control between Twisted Ribbon, Helical Ribbon, and Nanotube Self-Assemblies with His-Containing Helical Peptides in Response to pH Change. Langmuir 2014, 30, 1022–1028. DOI: 10.1021/la404784e.
  • Reches, M.; Gazit, E. Casting Metal Nanowires within Discrete Self-Assembled Peptide Nanotubes. Science 2003, 300, 625–627. DOI: 10.1126/science.1082387.
  • Feng, W.; Huang, Z.; Kang, X.; Zhao, D.; Li, H.; Li, G.; Xu, J.; Wang, X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021, 22, 4871–4882. DOI: 10.1021/acs.biomac.1c01164.
  • Lefley, J.; Waldron, C.; Becer, C. R. Macromolecular Design and Preparation of Polymersomes. Polym. Chem. 2020, 11, 7124–7136. DOI: 10.1039/D0PY01247E.
  • Zhu, J.; Han, H.; Li, F.; Wang, X.; Yu, J.; Qin, X.; Wu, D. Peptide-Functionalized Amino Acid-Derived Pseudoprotein-Based Hydrogel with Hemorrhage Control and Antibacterial Activity for Wound Healing. Chem. Mater. 2019, 31, 4436–4450. DOI: 10.1021/acs.chemmater.9b00850.
  • Mahler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E. Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide. Adv. Mater. 2006, 18, 1365–1370. DOI: 10.1002/adma.200501765.
  • Kumar, S.; Acharya, R.; Chatterji, U.; De, P. Controlled Synthesis of pH Responsive Cationic Polymers Containing Side Chain Peptide Moieties via RAFT Polymerization and Their Self- Assembly. J. Mater. Chem. B 2013, 1, 946–957. DOI: 10. 1039/C2TB00170E
  • Kumar, S.; Bheemireddy, V.; De, P. Aβ17–20 Peptide-Guided Structuring of Polymeric Conjugates and Their pH-Triggered Dynamic Response. Macromol. Biosci. 2015, 15, 1447–1456. DOI: 10.1002/mabi.201500134.
  • Yang, C.; Wu, K. B.; Deng, Y.; Yuan, J.; Niu, J. Geared toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Lett. 2021, 10, 243–257. DOI: 10.1021/acsmacrolett.0c00855.
  • Zhou, C.; Yuan, Y.; Zhou, P.; Wang, F.; Hong, Y.; Wang, N.; Xu, S.; Du, J. Highly Effective Antibacterial Vesicles Based on Peptide-Mimetic Alternating Copolymers for Bone Repair. Biomacromolecules 2017, 18, 4154–4162. DOI: 10.1021/acs.biomac.7b01209.
  • Liu, T.; Lang, M. Preparation and Characterization of Novel Functional Tri-Block Copolymer for Constructing Temperature/Redox Dual-Stimuli Responsive Micelles. J. Macromol. Sci., Part A: Pure Appl. Chem. 2022, 59, 513–525. DOI: 10.1080/10601325.2022.2092409.
  • Sar, P.; Ghosh, S.; Gordievskaya, Y. D.; Goswami, K. G.; Kramarenko, E. U.; De, P. pH-Induced Amphiphilicity Reversing Schizophrenic Aggregation by Alternating Copolymers. Macromolecules 2019, 52, 8346–8358 DOI: 10.1021/acs.macromol.9b01804.
  • Vasilenko, I. V.; Kostjuk, S. V. Homogeneous and Heterogeneous Catalysts for the Synthesis of Highly Reactive Polyisobutylene: Discovery, Development and Perspectives. J. Macromol. Sci., Part A: Pure Appl. Chem. 2021, 58, 725–735. DOI: 10.1080/10601325.2021.1956332.
  • Pinchuk, L.; Wilson, G. J.; Barry, J. J.; Schoephoerster, R. T.; Parel, J. M.; Kennedy, J. P. Medical Applications of Poly(Styrene-Block-Isobutylene-Block-Styrene) (“SIBS”). Biomaterials 2008, 29, 448–460. DOI: 10.1016/j.biomaterials.2007.09.041.
  • Binder, W. H.; Sachsenhofer, R. Polymersome/Silica Capsules by ‘Click’-Chemistry. Macromol. Rapid Commun. 2008, 29, 1097–1103. DOI: 10.1002/marc.200800119.
  • Rajasekhar, T.; Singh, G.; Kapur, G. S.; Ramakumar, S. S. V. Recent Advances in Catalytic Chain Transfer Polymerization of Isobutylene: A Review. RSC Adv. 2020, 10, 18180–18191. DOI: 10.1039/D0RA01945C.
  • Dey, A.; Haldar, U.; De, P. Block Copolymer Synthesis by the Combination of Living Cationic Polymerization and Other Polymerization Methods. Front. Chem. 2021, 9, 354–364. DOI: 10.3389/fchem.2021.644547.
  • Ferguson, C. J.; Hughes, R. J.; Pham, B. T. T.; Hawkett, B. S.; Gilbert, R. G.; Serelis, A. K.; Such, C. H. Effective ab Initio Emulsion Polymerization under RAFT Control. Macromolecules 2002, 35, 9243–9245. DOI: 10.1021/ma025626j.
  • Dey, A.; Haldar, U.; Rajasekhar, T.; Ghosh, P.; Faust, R.; De, P. Polyisobutylene-Based Glycopolymers as Potent Inhibitors for in Vitro Insulin Aggregation. J. Mater. Chem. B 2022, 10, 9446–9456. DOI: 10.1039/D2TB01856J.
  • Kalyanasundaram, K.; Thomas, J. K. Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems. J. Am. Chem. Soc. 1977, 99, 2039–2044. DOI: 10.1021/ja00449a004.
  • Wyszogrodzka, M.; Haag, R. A Convergent Approach to Biocompatible Polyglycerol “Click” Dendrons for the Synthesis of Modular Core Shell Architectures and Their Transport Behavior. Chemistry 2008, 14, 9202–9214. DOI: 10.1002/chem.200800892.
  • Kumari, M.; Gupta, S.; Achazi, K.; Böttcher, C.; Khandare, J.; Sharma, S. K.; Haag, R. Dendronized Multifunctional Amphiphilic Polymers as Efficient Nanocarriers for Biomedical Applications. Macromol. Rapid Commun. 2015, 36, 254–261. DOI: 10.1002/marc.201400467.
  • Kumari, M.; Singh, A. K.; Kumar, S.; Achazi, K.; Gupta, S.; Haag, R.; Sharma, S. K. Synthesis of Amphiphilic Dendronized Polymers to Study Their Self-Assembly and Transport Behavior. Polym. Adv. Technol. 2014, 25, 1208–1215. DOI: 10.1002/pat.3293.
  • Bauri, K.; De, P.; Shah, P. N.; Li, R.; Faust, R. Polyisobutylene-Based Helical Block Copolymers with pH-Responsive Cationic Side-Chain Amino Acid Moieties by Tandem Living Polymerizations. Macromolecules 2013, 46, 5861–5870. DOI: 10.1021/ma401395f.
  • De, P.; Gondi, S. R.; Roy, D.; Sumerlin, B. S. Boronic Acid-Terminated Polymers: Synthesis by RAFT and Subsequent Supramolecular and Dynamic Covalent Self-Assembly. Macromolecules 2009, 42, 5614–5621. DOI: 10.1021/ma900835y.
  • Maiti, B.; Ng, G.; Abramov, A.; Boyer, C.; Díaz, D. D. Methionine-Based Carbon Monoxide Releasing Polymer for the Prevention of Biofilm Formation. Polym. Chem. 2021, 12, 3968–3975. DOI: 10.1039/D1PY00546D.
  • Odian, G. Principles of Polymerization, 4th ed., Wiley, New Jersey 2004; p. 466.
  • Bag, S.; Ghosh, S.; Paul, S.; Khan, M. E. H.; De, P. Styrene-Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances and Future Perspectives. Macromol. Rapid Commun. 2021, 42, 2100501–2100525. DOI: 10.1002/marc.202100501.
  • Barron, P. F.; Hill, D. J. T.; O'Donnell, J. H.; O'Sullivan, P. W. Applications of DEPT Experiments to the 13C NMR of Copolymers: Poly(Styrene-co-Maleic Anhydride) and Poly(Styrene-co-Acrylonitrile). Macromolecules 1984, 17, 1967–1972. DOI: 10.1021/ma00140a016.
  • Vancoillie, G.; Brooks, W. L. A.; Mees, M. A.; Sumerlin, B. S.; Hoogenboom, R. Synthesis of Novel Boronic Acid-Decorated Poly(2-Oxazoline)s Showing Triple-Stimuli Responsive Behavior. Polym. Chem. 2016, 7, 6725–6734. DOI: 10.1039/C6PY01437B.
  • Pal, S.; Roy, S. G.; De, P. Synthesis via RAFT Polymerization of Thermo- and pH-Responsive Random Copolymers Containing Cholic Acid Moieties and Their Self-Assembly in Water. Polym. Chem. 2014, 5, 1275–1284. DOI: 10.1039/C3PY01317K.
  • Dan, K.; Bose, N.; Ghosh, S. Vesicular Assembly and Thermo-Responsive Vesicle-to-Micelle Transition from an Amphiphilic Random Copolymer. Chem. Commun. (Camb) 2011, 47, 12491–12493. DOI: 10.1039/C1CC15663B.
  • Wu, D.; Abezgauz, L.; Danino, D.; Ho, C.-C.; Co, C. C. Alternating Polymer Vesicles. Soft Matter 2008, 4, 1066–1071. DOI: 10.1039/B715608A.
  • Chen, J.; Yu, C.; Shi, Z.; Yu, S.; Lu, Z.; Jiang, W.; Zhang, M.; He, W.; Zhou, Y.; Yan, D. Ultrathin Alternating Copolymer Nanotubes with Readily Tunable Surface Functionalities. Angew. Chem. Int. Ed. Engl. 2015, 54, 3621–3625. DOI: 10.1002/anie.201408290.
  • Prasad, S.; Achazi, K.; Böttcher, C.; Haag, R.; Sharma, S. K. Fabrication of Nanostructures through Self-Assembly of Non-Ionic Amphiphiles for Biomedical Applications. RSC Adv. 2017, 7, 22121–22132. DOI: 10.1039/C6RA28654B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.