341
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of dendronized PAMAM grafted ROMP polymers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 282-296 | Received 27 Dec 2022, Accepted 21 Mar 2023, Published online: 03 Apr 2023

References

  • Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132. DOI: 10.1295/polymj.17.117.
  • Esfand, R.; Tomalia, D. A. Poly(Amidoamine) (PAMAM) Dendrimers: From Biomimicry to Drug Delivery and Biomedical Applications. Drug Discovery Today 2001, 6, 427–436. DOI: 10.1016/S1359-6446(01)01757-3.
  • Deng, J.; Zhou, Y.; Xu, B.; Mai, K.; Deng, Y.; Zhang, L. M. Dendronized Chitosan Derivative as a Biocompatible Gene Delivery Carrier. Biomacromolecules 2011, 12, 642–649. DOI: 10.1021/bm101303f.
  • Chakrabarti, A.; Juilfs, A.; Filler, R.; Mandal, B. K. Novel PEO-Based Dendronized Polymers for Lithium-Ion Batteries. Solid State Ionics 2010, 181, 982–986. DOI: 10.1016/j.ssi.2010.05.016.
  • Winnicka, K.; Sosnowska, K.; Wieczorek, P.; Sacha, P. T.; Tryniszewska, E. Poly(Amidoamine) Dendrimers Increase Antifungal Activity of Clotrimazole. Biol. Pharmaceut. Bull. 2011, 34, 1129–1133. DOI: 10.1248/bpb.34.1129.
  • Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P. T.; Tryniszewska, E. Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity. Molecules 2012, 17, 4612–4624. DOI: 10.3390/molecules17044612.
  • Kim, J. W.; Choi, E. A.; Park, S. M. Electrochemically Controlled Preparation of Platinum-Poly (Amidoamine) Dendrimer Hybrid Nanowires and Their Characterization. J. Electrochem. Soc. 2003, 150, E202–E206. DOI: 10.1149/1.1554727.
  • Cheng, L.; Pacey, G. E.; Cox, J. A. Preparation and Electrocatalytic Applications of a Multilayer Nanocomposite Consisting of Phosphomolybdate and Poly(Amidoamine). Electrochim. Acta 2001, 46, 4223–4228. DOI: 10.1016/S0013-4686(01)00712-5.
  • Shukla, R.; Thomas, T. P.; Peters, J.; Kotlyar, A.; Myc, A.; Baker, J. R. Tumor Angiogenic Vasculature Targeting with PAMAM Dendrimer-RGD Conjugates. Chem. Commun. 2005, 46, 5739–5741. DOI: 10.1039/b507350b.
  • Majoros, I. J.; Thomas, T. P.; Mehta, C. B.; Baker, J. R. Poly(Amidoamine) Dendrimer-Based Multifunctional Engineered Nanodevice for Cancer Therapy. J. Med. Chem. 2005, 48, 5892–5899. DOI: 10.1021/jm0401863.
  • Talanov, V. S.; Regino, C. A. S.; Kobayashi, H.; Bernardo, M.; Choyke, P. L.; Brechbiel, M. W. Dendrimer-Based Nanoprobe for Dual Modality Magnetic Resonance and Fluorescence Imaging. Nano Lett. 2006, 6, 1459–1463. DOI: 10.1021/nl060765q.
  • Zhu, W.; Okollie, B.; Bhujwalla, Z. M.; Artemov, D. PAMAM Dendrimer-Based Contrast Agents for MR Imaging of Her-2/Neu Receptors by a Three-Step Pretargeting Approach. Magn. Reson. Med. 2008, 59, 679–685. DOI: 10.1002/mrm.21508.
  • Roberts, J. C.; Bhalgat, M. K.; Zera, R. T. Preliminary Biological Evaluation of Polyamidoamine (PAMAM) StarburstTM Dendrimers. J. Biomed. Mater. Res. 1996, 30, 53–65. DOI: 10.1002/(SICI)1097-4636(199601)30:1 < 53::AID-JBM8 > 3.0.CO;2-Q.
  • Peterson, J.; Allikmaa, V.; Subbi, J.; Pehk, T.; Lopp, M. Structural Deviations in Poly(Amidoamine) Dendrimers: A MALDI-TOF MS Analysis. Eur. Polym. J. 2003, 39, 33–42. DOI: 10.1016/S0014-3057(02)00188-X.
  • Wörner, C.; Mülhaupt, R. Polynitrile‐ and Polyamine‐Functional Poly(Trimethylene Imine) Dendrimers. Angew. Chem. Int. Ed. Engl. 1993, 32, 1306–1308. DOI: 10.1002/anie.199313061.
  • Percec, V.; Cho, W. D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. Structural Analysis of Cylindrical and Spherical Supramolecular Dendrimers Quantifies the Concept of Monodendron Shape Control by Generation Number. J. Am. Chem. Soc. 1998, 120, 11061–11070. DOI: 10.1021/ja9819007.
  • Tomalia, D. A.; Hedstrand, D. M.; Ferritto, M. S. New Macromolecular Architecture Derived from Dendritic Grafting. Macromolecules 1991, 24, 1435–1438. DOI: 10.1021/ma00006a039.
  • Kim, K. O.; Choi, T. L. Synthesis of Dendronized Polymers via Macromonomer Approach by Living ROMP and Their Characterization: From Rod-like Homopolymers to Block and Gradient Copolymers. Macromolecules 2013, 46, 5905–5914. DOI: 10.1021/ma401132u.
  • Zhang, A.; Shu, L.; Bo, Z.; Schlüter, A. D. Dendronized Polymers: Recent Progress in Synthesis. Macromol. Chem. Phys. 2003, 204, 328–339. DOI: 10.1002/macp.200290086.
  • Moingeon, F.; Masson, P.; Méry, S. Preparation of Multiallylic Dendronized Polymers via Anionic Polymerization. Macromolecules 2007, 40, 55–64. DOI: 10.1021/ma0620666.
  • Schlüter, A. D.; Rabe, J. P. Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angew. Chem. Int. Ed. 2000, 39, 864–883. DOI: 10.1002/(sici)1521-3773(20000303)39:5 < 864::aid-anie864 > 3.0.co;2-e.
  • Zhang, S.; Tezuka, Y.; Zhang, Z.; Li, N.; Zhang, W.; Zhu, X. Recent Advances in the Construction of Cyclic Grafted Polymers and Their Potential Applications. Polym. Chem. 2018, 9, 677–686. DOI: 10.1039/C7PY01544E.
  • Lee, H.; IlJakubowski, W.; Matyjaszewski, K.; Yu, S.; Sheiko, S. S. Cylindrical Core - Shell Brushes Prepared by a Combination of ROP and ATRP. Macromolecules 2006, 39, 4983–4989. DOI: 10.1021/ma0604688.
  • Lee, H.; Il Matyjaszewski, K.; Sherryl, Y. S.; Sheiko, S. S. Hetero-Grafted Block Brushes with PCL and PBA Side Chains. Macromolecules 2008, 41, 6073–6080. DOI: 10.1021/ma800412s.
  • Cheng, C.; Khoshdel, E.; Wooley, K. L. One-Pot Tandem Synthesis of a Core-Shell Brush Copolymer from Small Molecule Reactants by Ring-Opening Metathesis and Reversible Addition-Fragmentation Chain Transfer (Co)Polymerizations. Macromolecules 2007, 40, 2289–2292. DOI: 10.1021/ma0627525.
  • Nese, A.; Kwak, Y.; Nicolaÿ, R.; Barrett, M.; Sheiko, S. S.; Matyjaszewski, K. Synthesis of Poly(Vinyl Acetate) Molecular Brushes by a Combination of Atom Transfer Radical Polymerization (ATRP) and Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules 2010, 43, 4016–4019. DOI: 10.1021/ma1004698.
  • Myers, V. S.; Weir, M. G.; Carino, E. V.; Yancey, D. F.; Pande, S.; Crooks, R. M. Dendrimer-Encapsulated Nanoparticles: New Synthetic and Characterization Methods and Catalytic Applications. Chem. Sci. 2011, 2, 1632–1646. DOI: 10.1039/c1sc00256b.
  • Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. DOI: 10.1021/cr030698+.
  • Zhao, M.; Crooks, R. M. Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer- Encapsulated Pd and Pt Nanoparticles. Angew. Chem. Int. Ed. 1999, 38, 364–366. DOI: 10.1002/(SICI)1521-3773(19990201)38:3 < 364::AID-ANIE364 > 3.0.CO;2-L.
  • Crooks, R. M.; Zhao, M. Dendrimer-Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Adv. Mater. 1999, 11, 217–220. DOI: 10.1002/(sici)1521-4095(199903)11:3 < 217::aid-adma217 > 3.0.co;2-7.
  • Chechik, V.; Zhao, M.; Crooks, R. M. Self-Assembled Inverted Micelles Prepared from a Dendrimer Template: Phase Transfer of Encapsulated Guests [10]. J. Am. Chem. Soc 1999, 121, 4910–4911. DOI: 10.1021/ja990445r.
  • Chechik, V.; Crooks, R. M. Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts [15]. J. Am. Chem. Soc. 2000, 122, 1243–1244. DOI: 10.1021/ja9936870.
  • Zhao, M.; Tokuhisa, H.; Crooks, R. M. Molecule-Sized Gates Based on Surface-Confined Dendrimers. Angew. Chem. Int. Ed. Engl. 1997, 36, 2596–2598. DOI: 10.1002/anie.199725961.
  • Valério, C.; Alonso, E.; Ruiz, J.; Blais, J.-C.; Astruc, D. A Polycationic Metallodendrimer with 24 [Fe(5-C5Me5)(6-N-Alkylaniline)]+ Termini That Recognizes Chloride and Bromide Anions. Angew. Chem. Int. Ed. 1999, 38, 1747–1751. DOI: 10.1002/(sici)1521-3773(19990614)38:12 < 1747::aid-anie1747 > 3.3.co;2-7.
  • Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science (80-.) 1996, 271, 933–937. DOI: 10.1126/science.271.5251.933.
  • Tomalia, D. A.; Dvornic, P. R. What Promise for Dendrimers? Nature 1994, 372, 617–618. DOI: 10.1038/372617a0.
  • Vijayaraghavan, G.; Stevenson, K. J. Synergistic Assembly of Dendrimer-Templated Platinum Catalysts on Nitrogen-Doped Carbon Nanotube Electrodes for Oxygen Reduction. Langmuir 2007, 23, 5279–5282. DOI: 10.1021/la0637263.
  • Scott, R. W. J.; Datye, A. K.; Crooks, R. M. Bimetallic Palladium − Platinum Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc. 2003, 125, 3708–3709. DOI: 10.1021/ja034176n.
  • Garcia-Martinez, J. C.; Lezutekong, R.; Crooks, R. M. Dendrimer-Encapsulated Pd Nanoparticles as Aqueous, Room-Temperature Catalysts for the Stille Reaction. J. Am. Chem. Soc. 2005, 127, 5097–5103. DOI: 10.1021/ja042479r.
  • Zhao, M.; Crooks, R. M. Intradendrimer Exchange of Metal Nanoparticles. Chem. Mater. 1999, 11, 3379–3385. DOI: 10.1021/cm990435p.
  • Zhao, M.; Sun, L.; Crooks, R. M. Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Chem. Soc. 1998, 120, 4877–4878. DOI: 10.1021/ja980438n.
  • Ottaviani, M. F.; Bossmann, S.; Turro, N. J.; Tomalia, D. A. Characterization of Starburst Dendrimers by the Epr Technique.1. Copper-Complexes in Water Solution. J. Am. Chem. Soc. 1994, 116, 661–671. DOI: 10.1021/ja00081a029.
  • Feng, Z. V.; Lyon, J. L.; Croley, J. S.; Crooks, R. M.; Vanden Bout, D. A.; Stevenson, K. J. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles. An Undergraduate Expirement Catalytic Nanomaterials. J. Chem. Educ. 2009, 86, 368–372. DOI: 10.1021/ed086p368.
  • Patala, R.; Noh, J. H.; Meijboom, R. Determination of Maximum Loading Capacity of Polyamidoamine (PAMAM) Dendrimers and Evaluation of Cu55 Dendrimer-Encapsulated Nanoparticles for Catalytic Activity. Int. J. Chem. Kinet 2018, 50, 693–704. DOI: 10.1002/kin.21193.
  • Nemanashi, M.; Meijboom, R. Synthesis and Characterization of Cu, Ag and Au Dendrimer-Encapsulated Nanoparticles and Their Application in the Reduction of 4-Nitrophenol to 4-Aminophenol. J. Colloid Interface Sci. 2013, 389, 260–267. DOI: 10.1016/j.jcis.2012.09.012.
  • Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H. A Practical and Highly Active Ruthenium-Based Catalyst That Effects the Cross Metathesis of Acrylonitrile. Angew. Chem. Int. Ed. 2002, 41, 4035–4037. DOI: 10.1002/1521-3773(20021104)41.
  • South, C. R.; Burd, C.; Weck, M. Modular and Dynamic Functionalization of Polymeric Scaffolds. Acc. Chem. Res. 2007, 40, 63–74. DOI: 10.1021/ar0500160.
  • Yang, S. K.; Ambade, A. V.; Weck, M. Main-Chain Supramolecular Block Copolymers. Chem. Soc. Rev. 2011, 40, 129–137. DOI: 10.1039/C0CS00073F.
  • Shu, L.; Göossl, I.; Rabe, J. P.; Dieter Schlüter, A. Quantitative Aspects of the Dendronization of Dendronized Linear Polystyrenes. Macromol. Chem. Phys. 2002, 203, 2540–2550. DOI: 10.1002/macp.200290037.
  • Shu, L.; Schlüter, A. D. Synthesis and Polymerization of an Amine-Terminated Dendronized Styrene. Macromol. Chem. Phys. 2000, 201, 239–245. DOI: 10.1002/(SICI)1521-3935(20000201)201:2 < 239::AID-MACP239 > 3.0.CO;2-6.
  • Li, W.; Zhang, A.; Schlüter, A. D. Efficient Synthesis of First- and Second-Generation, Water-Soluble Dendronized Polymers. Macromolecules 2008, 41, 43–49. DOI: 10.1021/ma702025u.
  • Stewart, G. M.; Fox, M. A. Dendrimer-Linear Polymer Hybrids through ROMP. Chem. Mater. 1998, 10, 860–863. DOI: 10.1021/cm970624c.
  • Boydston, A. J.; Holcombe, T. W.; Unruh, D. A.; Fr??chet, J. M. J.; Grubbs, R. H. A Direct Route to Cyclic Organic Nanostructures via Ring-Expansion Metathesis Polymerization of a Dendronized Macromonomer. J. Am. Chem. Soc. 2009, 131, 5388–5389. DOI: 10.1021/ja901658c.
  • Rajaram, S.; Choi, T.; Rolandi, M.; Frechet, J. M. J. Synthesis of Dendronized Diblock Copolymers via Ring-Opening Metathesis Polymerization and Their Visualization Using Atomic Force Microscopy. J. Am. Chem. Soc. 2007, 129, 9619–9621. +. DOI: 10.1021/ja0741980.
  • Lapinte, V.; Brosse, J. C.; Fontaine, L. Synthesis and Ring-Opening Metathesis Polymerization (ROMP) Reactivity of Endo-and Exo-Norbornenylazlactone Using Ruthenium Catalysts. Macromol. Chem. Phys. 2004, 205, 824–833. DOI: 10.1002/macp.200300120.
  • Jung, H.; Carberry, T. P.; Weck, M. Synthesis of First- and Second-Generation Poly (Amide) -Dendronized Polymers via Ring-Opening Metathesis Polymerization. Macromolecules 2011, 44, 9075–9083. DOI: 10.1021/ma2016375.
  • Kim, K. O.; Choi, T. L. Synthesis of Rod-like Dendronized Polymers Containing G4 and G5 Ester Dendrons via Macromonomer Approach by Living ROMP. ACS Macro. Lett. 2012, 1, 445–448. DOI: 10.1021/mz300032w.
  • Liu, X.; Liu, F.; Liu, W.; Gu, H. ROMP and MCP as Versatile and Forceful Tools to Fabricate Dendronized Polymers for Functional Applications. Polym. Rev. 2021, 61, 1–53. DOI: 10.1080/15583724.2020.1723022.
  • Zhang, A.; Okrasa, L.; Pakula, T.; Schlüter, A. D. Homologous Series of Dendronized Polymethacrylates with a Methyleneoxycarbonyl Spacer between the Backbone and Dendritic Side Chain: Synthesis, Characterization, and Some Bulk Properties. J. Am. Chem. Soc. 2004, 126, 6658–6666. DOI: 10.1021/ja0494205.
  • Yamamoto, K.; Imaoka, T.; Tanabe, M.; Kambe, T. New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers. Chem. Rev. 2020, 120, 1397–1437. DOI: 10.1021/acs.chemrev.9b00188.
  • Liu, X.; Liu, F.; Astruc, D.; Lin, W.; Gu, H. Highly-Branched Amphiphilic Organometallic Dendronized Diblock Copolymer: ROMP Synthesis, Self-Assembly and Long-Term Au and Ag Nanoparticle Stabilizer for High-Efficiency Catalysis. Polymer 2019, 173, 1–10. DOI: 10.1016/j.polymer.2019.04.021.
  • Dutertre, F.; Bang, K.; Vereroudakis, E.; Loppinet, B.; Yang, S.; Kang, S.; Fytas, G.; Choi, T. Conformation of Tunable Nanocylinders: Up to Sixth-Generation Dendronized Polymers via Graft-Through Approach by ROMP. Macromolecules 2019, 52, 3342–3350. DOI: 10.1021/acs.macromol.9b00457.
  • Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Lim, Y. H.; Finn, M. G.; Koberstein, J. T.; Turro, N. J.; Tirrell, D. A.; Grubbs, R. H. Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-through and Clicking-To. J. Am. Chem. Soc. 2011, 133, 559–566. DOI: 10.1021/ja108441d.
  • Kahraman, G.; Wang, D. Y.; von Irmer, J.; Gallei, M.; Hey-Hawkins, E.; Eren, T. Synthesis and Characterization of Phosphorusand Carborane-Containing Polyoxanorbornene Block Copolymers. Polymers (Basel). 2019, 11, 613. DOI: 10.3390/polym11040613.
  • Süer, N. C.; Demir, C.; Ünübol, N. A.; Yalçın, Ö.; Kocagöz, T.; Eren, T. Antimicrobial Activities of Phosphonium Containing Polynorbornenes. RSC Adv. 2016, 6, 86151–86157. DOI: 10.1039/C6RA15545F.
  • Rousseau, G.; Fensterbank, H.; Baczko, K.; Cano, M.; Stenger, I.; Larpent, C.; Allard, E. Synthesis of Clickable Water-Soluble Poly(Amidoamine) Fullerodendrimers and Their Use for Surface Functionalization of Azido-Coated Polymer Nanoparticles. Chempluschem 2013, 78, 352–363. DOI: 10.1002/cplu.201300045.
  • Ghosh, S.; Banthia, A. K.; Chen, Z. Synthesis and Photoresponsive Study of Azobenzene Centered Polyamidoamine Dendrimers. Tetrahedron 2005, 61, 2889–2896. DOI: 10.1016/j.tet.2005.01.052.
  • DeRonde, B. M.; Birke, A.; Tew, G. N. Design of Aromatic-Containing Cell-Penetrating Peptide Mimics with Structurally Modified π Electronics. Chem. A Eur. J. 2015, 21, 3013–3019. DOI: 10.1002/chem.201405381.
  • Ertürk, A. S.; Tülü, M.; Bozdoğan, A. E.; Parali, T. Microwave Assisted Synthesis of Jeffamine Cored PAMAM Dendrimers. Eur. Polym. J. 2014, 52, 218–226. DOI: 10.1016/j.eurpolymj.2013.12.018.
  • Sankaran, N. B.; Rys, A. Z.; Nassif, R.; Nayak, M. K.; Metera, K.; Chen, B.; Bazzi, H. S.; Sleiman, H. F. Ring-Opening Metathesis Polymers for Biodetection and Signal Amplification: Synthesis and Self-Assembly. Macromolecules 2010, 43, 5530–5537. DOI: 10.1021/ma100234j.
  • Islam, M. N.; Aksu, B.; Güncü, M.; Gallei, M.; Tulu, M.; Eren, T. Amphiphilic Water Soluble Cationic Ring Opening Metathesis Copolymer as an Antibacterial Agent. J. Polym. Sci. 2020, 58, 872–884. DOI: 10.1002/pol.20190194.
  • France, M. B.; Alty, L. T.; Earl, T. M. Synthesis of a 7-Oxanorbornene Monomer: A Two-Step Sequence Preparation for the Organic Laboratory. J. Chem. Educ. 1999, 76, 659–660. DOI: 10.1021/ed076p659.
  • Wong, A. C.; Ritchey, W. M. The Endo-Exo Isomerization of N-Phenyl-5-Norbornene-2,3-Dicarboximide. Spectrosc. Lett. 1980, 13, 503–508. DOI: 10.1080/00387018008064044.
  • Percec, V.; Ahn, C.-H.; Barboiu, B. Self-Encapsulation, Acceleration and Control in the Radical Polymerization of Monodendritic Monomers via Self-Assembly. J. Am. Chem. Soc. 1997, 119, 12978–12979. DOI: 10.1021/ja9727878.
  • Eren, T.; Som, A.; Rennie, J. R.; Nelson, C. F.; Urgina, Y.; Nüsslein, K.; Coughlin, E. B.; Tew, G. N. Antibacterial and Hemolytic Activities of Quaternary Pyridinium Functionalized Polynorbornenes. Macromol. Chem. Phys. 2008, 209, 516–524. DOI: 10.1002/macp.200700418.
  • Lşıksel, E.; Kahraman, G.; Ceren Süer, N.; Wang, D. Y.; Eren, T. Synthesis and Characterization of Phosphonate and Aromatic-Based Polynorbornene Polymers Derived from the Ring Opening Metathesis Polymerization Method and Investigation of Their Thermal Properties. J. Appl. Polym. Sci. 2019, 136, 47085. DOI: 10.1002/app.47085.
  • Vargas, J.; Santiago, A. A.; Gaviño, R.; Cerda, A. M.; Tlenkopatchev, M. A. Synthesis and Ring-Opening Metathesis Polymerization (ROMP) of New N-Fluoro-Phenylnorbornene Dicarboximides by 2nd Generation Ruthenium Alkylidene Catalysts. Express Polym. Lett. 2007, 1, 274–282. DOI: 10.3144/expresspolymlett.2007.40.
  • Bishop, J. P.; Register, R. A. Cis/Trans Gradients in Living Ring-Opening Metathesis Polymerization. Polymer (Guildf) 2010, 51, 4121–4126. DOI: 10.1016/j.polymer.2010.06.061.
  • Izunobi, J. U.; Higginbotham, C. L. Polymer Molecular Weight Analysis by 1H NMR Spectroscopy. J. Chem. Educ. 2011, 88, 1098–1104. DOI: 10.1021/ed100461v.
  • Choi, T.-L.; Grubbs, R. Controlled Living Ring‐Opening‐Metathesis Polymerization by a Fast‐Initiating Ruthenium Catalyst. Angew. Chem. 2003, 115, 1785–1788. DOI: 10.1002/ange.200250632.
  • Bielawski, C. W.; Grubbs, R. H. Highly Efficient Ring-Opening Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts Containing N-Heterocyclic Carbene Ligands. Angew. Chem. Int. Ed. 2000, 39, 2903–2906. DOI: 10.1002/1521-3773(20000818)39:16 < 2903::AID-ANIE2903 > 3.0.CO;2-Q.
  • Walsh, D. J.; Lau, S. H.; Hyatt, M. G.; Guironnet, D. Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts. J. Am. Chem. Soc. 2017, 139, 13644–13647. DOI: 10.1021/jacs.7b08010.
  • Slugovc, C. The Ring Opening Metathesis Polymerisation Toolbox. Macromol. Rapid Commun. 2004, 25, 1283–1297. DOI: 10.1002/marc.200400150.
  • Lummiss, J. A. M.; Ireland, B. J.; Sommers, J. M.; Fogg, D. E. Amine-Mediated Degradation in Olefin Metathesis Reactions That Employ the Second-Generation Grubbs Catalyst. ChemCatChem 2014, 6, 459–463. DOI: 10.1002/cctc.201300861.
  • Cetinkaya, I. C.; Eren, T. The Synthesis of Cyclic Hydroxy-Phosphonate Bearing Polybutene Using ROMP. Eur. Polym. J. 2019, 121, 109318. DOI: 10.1016/j.eurpolymj.2019.109318.
  • Scherman, O. A.; Grubbs, R. H. Polycyclooctatetraene (Polyacetylene) Produced with a Ruthenium Olefin Metathesis Catalyst. Synth. Met. 2001, 124, 431–434. DOI: 10.1016/S0379-6779(01)00392-7.
  • Matyjaszewski, K.; Müller, A. H. E. Controlled and Living Polymerizations; 2009.
  • Gürbüz, M. U.; Ertürk, A. S. Synthesis and Characterization of Jeffamine Core PAMAM Dendrimer-Silver Nanocomposites (Ag JCPDNCs) and Their Evaluation in the Reduction of 4-Nitrophenol. J. Turkish Chem. Soc. Sect. A Chem. 2018, 5, 885–894. DOI: 10.18596/jotcsa.428572.
  • Ertürk, A. S.; Gürbüz, M. U.; Tülü, M.; Emin Bozdoğan, A. Emin Bozdoğan, A. Preparation of Cu Nanocomposites from EDA, DETA, and Jeffamine Cored PAMAM Dendrimers with TRIS and Carboxyl Surface Functional Groups. ACSi 2016, 63, 763–771. DOI: 10.17344/acsi.2016.2528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.