467
Views
0
CrossRef citations to date
0
Altmetric
Feature Article

Dynamic covalent adaptive polymer network materials based on hindered urea bonds

&
Pages 307-320 | Received 23 Mar 2023, Accepted 13 Apr 2023, Published online: 12 May 2023

References

  • Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: Permanent Organic Networks with Glass-like Fluidity. Chem. Sci. 2016, 7, 30–38. DOI: 10.1039/c5sc02223a.
  • Bowman, C. N.; Kloxin, C. J. Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks. Angew. Chem. Int. Ed. Engl. 2012, 51, 4272–4274. DOI: 10.1002/anie.201200708.
  • Kloxin, C. J.; Bowman, C. N. Covalent Adaptable Networks: Smart, Reconfigurable and Responsive Network Systems. Chem. Soc. Rev. 2013, 42, 7161–7173. DOI: 10.1039/c3cs60046g.
  • Van Zee, N. J.; Nicolaÿ, R. Vitrimers: Permanently Crosslinked Polymers with Dynamic Network Topology. Prog. Polym. Sci. 2020, 104, 101233. DOI: 10.1016/j.progpolymsci.2020.101233.
  • Samanta, S.; Kim, S.; Saito, T.; Sokolov, A. P. Polymers with Dynamic Bonds: Adaptive Functional Materials for a Sustainable Future. J. Phys. Chem. B 2021, 125, 9389–9401. DOI: 10.1021/acs.jpcb.1c03511.
  • Van Lijsebetten, F.; Holloway, J. O.; Winne, J. M.; Du Prez, F. E. Internal Catalysis for Dynamic Covalent Chemistry Applications and Polymer Science. Chem. Soc. Rev. 2020, 49, 8425–8438. DOI: 10.1039/d0cs00452a.
  • Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968. DOI: 10.1126/science.1212648.
  • Dahlke, J.; Zechel, S.; Hager, M. D.; Schubert, U. S. How to Design a Self-Healing Polymer: General Concepts of Dynamic Covalent Bonds and Their Application for Intrinsic Healable Materials. Adv. Mater. Interfaces 2018, 5, 1800051. DOI: 10.1002/admi.201800051.
  • Bednarek, M.; Kubisa, P. Reversible Networks of Degradable Polyesters Containing Weak Covalent Bonds. Polym. Chem. 2019, 10, 1848–1872. DOI: 10.1039/C8PY01731J.
  • Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B. Progress in the Design and Synthesis of Biobased Epoxy Covalent Adaptable Networks. Polym. Chem. 2022, 13, 6573–6588. DOI: 10.1039/D2PY01167K.
  • Wu, D. Y.; Meure, S.; Solomon, D. Self-Healing Polymeric Materials: A Review of Recent Developments. Prog. Polym. Sci. 2008, 33, 479–522. DOI: 10.1016/j.progpolymsci.2008.02.001.
  • Nellepalli, P.; Patel, T.; Oh, J. K. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol. Rapid Commun. 2021, 42, 2100391. DOI: 10.1002/marc.202100391.
  • Willocq, B.; Odent, J.; Dubois, P.; Raquez, J.-M. Advances in Intrinsic Self-Healing Polyurethanes and Related Composites. RSC Adv. 2020, 10, 13766–13782. DOI: 10.1039/d0ra01394c.
  • Aguirresarobe, R. H.; Nevejans, S.; Reck, B.; Irusta, L.; Sardon, H.; Asua, J. M.; Ballard, N. Healable and Self-Healing Polyurethanes Using Dynamic Chemistry. Prog. Polym. Sci. 2021, 114, 101362. DOI: 10.1016/j.progpolymsci.2021.101362.
  • Roy, N.; Bruchmann, B.; Lehn, J.-M. DYNAMERS: Dynamic Polymers as Self-Healing Materials. Chem. Soc. Rev. 2015, 44, 3786–3807. DOI: 10.1039/c5cs00194c.
  • Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem. Rev. 2021, 121, 1716–1745. DOI: 10.1021/acs.chemrev.0c00938.
  • Wanasinghe, S. V.; Dodo, O. J.; Konkolewicz, D. Dynamic Bonds: Adaptable Timescales for Responsive Materials. Angew. Chem. Int. Ed. Engl. 2022, 61, e202206938. DOI: 10.1002/anie.202206938.
  • Liu, T.; Zhao, B.; Zhang, J. Recent Development of Repairable, Malleable and Recyclable Thermosetting Polymers through Dynamic Transesterification. Polymer 2020, 194, 122392. DOI: 10.1016/j.polymer.2020.122392.
  • An, S. Y.; Arunbabu, D.; Noh, S. M.; Song, Y. K.; Oh, J. K. Recent Strategies to Develop Self-Healable Crosslinked Polymeric Networks. Chem. Commun. (Camb) 2015, 51, 13058–13070. DOI: 10.1039/c5cc04531b.
  • Liguori, A.; Hakkarainen, M. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks. Macromol. Rapid Commun. 2022, 43, e2100816. DOI: 10.1002/marc.202100816.
  • Zhang, Q.; Wang, S.; Rao, B.; Chen, X.; Ma, L.; Cui, C.; Zhong, Q.; Li, Z.; Cheng, Y.; Zhang, Y. Hindered Urea Bonds for Dynamic Polymers: An Overview. React. Funct. Polym. 2021, 159, 104807. DOI: 10.1016/j.reactfunctpolym.2020.104807.
  • Jung, S.; Patel, T.; Oh, J. K. Thermally Labile Self-Healable Branched Gel Networks Fabricated by New Macromolecular Engineering Approach Utilizing Thermoreversibility. Macromol. Rapid Commun. 2018, 39, 1700575. DOI: 10.1002/marc.201700575.
  • Zhou, Q.; Gardea, F.; Sang, Z.; Lee, S.; Pharr, M.; Sukhishvili, S. A. A Tailorable Family of Elastomeric‐to‐Rigid, 3D Printable, Interbonding Polymer Networks. Adv. Funct. Mater. 2020, 30, 2002374. DOI: 10.1002/adfm.202002374.
  • Berto, P.; Pointet, A.; Le Coz, C.; Grelier, S.; Peruch, F. Recyclable Telechelic Cross-Linked Polybutadiene Based on Reversible Diels–Alder Chemistry. Macromolecules 2018, 51, 651–659. DOI: 10.1021/acs.macromol.7b02220.
  • Ying, H.; Zhang, Y.; Cheng, J. Dynamic Urea Bond for the Design of Reversible and Self-Healing Polymers. Nat. Commun. 2014, 5, 4218/4211–4218/4219. DOI: 10.1038/ncomms4218.
  • Kang, D. H.; Cho, S.; Sung, S.; Kim, Y. R.; Lee, H.; Choe, A.; Yeom, J.; Kim, M. P.; Kim, J. C.; Noh, S. M.; Ko, H. Highly Transparent, Flexible, and Self-Healable Thermoacoustic Loudspeakers. ACS Appl. Mater. Interfaces 2020, 12, 53184–53192. DOI: 10.1021/acsami.0c12199.
  • Zhao, B.; Ding, H.; Xu, S.; Zheng, S. Organic-Inorganic Linear Segmented Polyurethanes Simultaneously Having Shape Recovery and Self-Healing Properties. ACS Appl. Polym. Mater. 2019, 1, 3174–3184. DOI: 10.1021/acsapm.9b00830.
  • Zhang, J.; Zhang, C.; Song, F.; Shang, Q.; Hu, Y.; Jia, P.; Liu, C.; Hu, L.; Zhu, G.; Huang, J.; Zhou, Y. Castor-Oil-Based, Robust, Self-Healing, Shape Memory, and Reprocessable Polymers Enabled by Dynamic Hindered Urea Bonds and Hydrogen Bonds. Chem. Eng. J. 2022, 429, 131848. DOI: 10.1016/j.cej.2021.131848.
  • Jia, Y.; Ying, H.; Zhang, Y.; He, H.; Cheng, J. Reconfigurable Poly(Urea‐Urethane) Thermoset Based on Hindered Urea Bonds with Triple‐Shape‐Memory Performance. Macromol. Chem. Phys. 2019, 220, 1900148. DOI: 10.1002/macp.201900148.
  • Fang, Z.; Zheng, N.; Zhao, Q.; Xie, T. Healable, Reconfigurable, Reprocessable Thermoset Shape Memory Polymer with Highly Tunable Topological Rearrangement Kinetics. ACS Appl. Mater. Interfaces 2017, 9, 22077–22082. DOI: 10.1021/acsami.7b05713.
  • Li, T.; Wang, Y.; Li, S.; Liu, X.; Sun, J. Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultra-Durable Ionic Skins. Adv. Mater. 2020, 32, e2002706. DOI: 10.1002/adma.202002706.
  • Son, D. H.; Bae, H. E.; Bae, M. J.; Lee, S.-H.; Cheong, I. W.; Park, Y. I.; Jeong, J.-E.; Kim, J. C. Fast, Localized, and Low-Energy Consumption Self-Healing of Automotive Clearcoats Using a Photothermal Effect Triggered by NIR Radiation. ACS Appl. Polym. Mater. 2022, 4, 3802–3810. DOI: 10.1021/acsapm.1c01768.
  • Ying, H.; Cheng, J. Hydrolyzable Polyureas Bearing Hindered Urea Bonds. J. Am. Chem. Soc. 2014, 136, 16974–16977. DOI: 10.1021/ja5093437.
  • Wang, Y.; Pan, Y.; Zheng, Z.; Ding, X. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds. Macromol. Rapid Commun. 2018, 39, e1800128. DOI: 10.1002/marc.201800128.
  • Zhang, L.; Rowan, S. J. Effect of Sterics and Degree of Cross-Linking on the Mechanical Properties of Dynamic Poly(Alkylurea–Urethane) Networks. Macromolecules 2017, 50, 5051–5060. DOI: 10.1021/acs.macromol.7b01016.
  • Zhang, Y.; Ying, H.; Hart, K. R.; Wu, Y.; Hsu, A. J.; Coppola, A. M.; Kim, T. A.; Yang, K.; Sottos, N. R.; White, S. R.; Cheng, J. Malleable and Recyclable Poly(Urea-Urethane) Thermosets Bearing Hindered Urea Bonds. Adv. Mater. 2016, 28, 7646–7651. DOI: 10.1002/adma.201601242.
  • Wang, S.; Yang, Y.; Ying, H.; Jing, X.; Wang, B.; Zhang, Y.; Cheng, J. Recyclable, Self-Healable, and Highly Malleable Poly(Urethane-Urea)s with Improved Thermal and Mechanical Performances. ACS Appl. Mater. Interfaces 2020, 12, 35403–35414. DOI: 10.1021/acsami.0c07553.
  • Patel, T.; Kim, M. P.; Park, J.; Lee, T. H.; Nellepalli, P.; Noh, S. M.; Jung, H. W.; Ko, H.; Oh, J. K. Self-Healable Reprocessable Triboelectric Nanogenerators Fabricated with Vitrimeric Poly(Hindered Urea) Networks. ACS Nano 2020, 14, 11442–11451. DOI: 10.1021/acsnano.0c03819.
  • Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; et al. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559–5562. DOI: 10.1021/ma9804951.
  • Perrier, S.; Takolpuckdee, P. Macromolecular Design via Reversible Addition-Fragmentation Chain Transfer (RAFT)/Xanthates (MADIX) Polymerization. J. Polym. Sci. A Polym. Chem. 2005, 43, 5347–5393. DOI: 10.1002/pola.20986.
  • McCormick, C. L.; Sumerlin, B. S.; Lokitz, B. S.; Stempka, J. E. RAFT-Synthesized Diblock and Triblock Copolymers: Thermally-Induced Supramolecular Assembly in Aqueous Media. Soft Matter 2008, 4, 1760–1773. DOI: 10.1039/b719577j.
  • Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J.; Perrier, S. Bioapplications of RAFT Polymerization. Chem. Rev. 2009, 109, 5402–5436. DOI: 10.1021/cr9001403.
  • Boyer, C.; Stenzel, M. H.; Davis, T. P. Building Nanostructures Using RAFT Polymerization. J. Polym. Sci. A Polym. Chem. 2011, 49, 551–595. DOI: 10.1002/pola.24482.
  • Nellepalli, P.; Kim, M. P.; Park, J.; Noh, S. M.; Ye, Z.; Jung, H. W.; Ko, H.; Oh, J. K. Dynamic and Reprocessable Fluorinated Poly(Hindered Urea) Network Materials Containing Ionic Liquids to Enhance Triboelectric Performance. ACS Appl. Mater. Interfaces 2022, 14, 17806–17817. DOI: 10.1021/acsami.2c01963.
  • Nellepalli, P.; Patel, T.; Kim, M. P.; Park, J.; Ye, Z.; Jung, H. W.; Ko, H.; Oh, J. K. Self-Healable Triboelectric Nanogenerators Based on Ionic Poly(Hindered Urea) Network Materials Cross-Linked with Fluorinated Block Copolymers. Polym. Chem. 2022, 13, 4343–4351. DOI: 10.1039/D2PY00252C.
  • Park, J. I.; Choe, A.; Kim, M. P.; Ko, H.; Lee, T. H.; Noh, S. M.; Kim, J. C.; Cheong, I. W. Water-Adaptive and Repeatable Self-Healing Polymers Bearing Bulky Urea Bonds. Polym. Chem. 2018, 9, 11–19. DOI: 10.1039/C7PY01655G.
  • Lee, H. M.; Perumal, S.; Kim, G. Y.; Kim, J. C.; Kim, Y.-R.; Kim, M. P.; Ko, H.; Rho, Y.; Cheong, I. W. Enhanced Thermomechanical Property of a Self-Healing Polymer via Self-Assembly of a Reversibly Cross-Linkable Block Copolymer. Polym. Chem. 2020, 11, 3701–3708. DOI: 10.1039/D0PY00310G.
  • Xie, S.; Wang, D.; Zhang, S.; Xu, J.; Fu, J. High Performance Poly(Methyl Methacrylate) via Hindered Urea Bond Crosslinking. J. Mater. Chem. A 2022, 10, 9457–9467. DOI: 10.1039/D1TA11084E.
  • Wang, F.-Z.; Wang, H.-Q.; Gao, W.-T.; Li, C.-H. Reducing the Reprocessing and Healing Temperature of Polyurea with Piperazine-Based Hindered Urea Bonds. Mater. Chem. Front. 2022, 6, 473–481. DOI: 10.1039/D1QM01281A.
  • Sun, W.; Luo, J.; Zhang, L.; Chen, Y.; Li, P.; Zheng, Y.; Cheng, Y. Insulating Silicones Based on Dynamic Hindered Urea Bonds with High Dielectric Healability and Recyclability. ACS Appl. Polym. Mater. 2021, 3, 5622–5631. DOI: 10.1021/acsapm.1c00948.
  • Sun, W.; Zhang, L.; Wang, S.; Mao, J.; Luo, J.; Chen, Y.; Cheng, Y. Mechanically Enhanced Healable and Recyclable Silicone with Dynamic Hindered Urea Bond for Flexible Electronics. J. Mater. Chem. C 2021, 9, 8579–8588. DOI: 10.1039/D1TC01273H.
  • Xie, D.-M.; Zhao, X.-L.; Li, Y.-D.; Weng, Y.; Zeng, J.-B. Biobased Dynamic Polymer Networks Derived from Castor Oil and Anhydrous Piperazine. Ind. Crops Prod. 2022, 188, 115739. DOI: 10.1016/j.indcrop.2022.115739.
  • Lu, X.; Zhang, L.; Zhang, J.; Wang, C.; Zhang, A. Facile Preparation of Dual Functional Wearable Devices Based on Hindered Urea Bond-Integrated Reprocessable Polyurea and AgNWs. ACS Appl. Mater. Interfaces 2022, 14, 41421–41432. DOI: 10.1021/acsami.2c11875.
  • Jiang, L.; Lei, Y.; Xiao, Y.; Fu, X.; Kong, W.; Wang, Y.; Lei, J. Mechanically Robust, Exceptionally Recyclable and Shape Memory Cross-Linked Network Based on Reversible Dynamic Urea Bonds. J. Mater. Chem. A 2020, 8, 22369–22378. DOI: 10.1039/D0TA07088B.
  • Wang, X.-Z.; Xie, D.-M.; Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B. Sustainable, Malleable, and Recyclable Castor Oil-Derived Poly(Urethane Urea) Networks with Tunable Mechanical Properties and Shape Memory Performance Based on Dynamic Piperazine–Urea Bonds. Macromolecules 2022, 55, 2243–2251. DOI: 10.1021/acs.macromol.2c00104.
  • Elizalde, F.; Amici, J.; Trano, S.; Vozzolo, G.; Aguirresarobe, R.; Versaci, D.; Bodoardo, S.; Mecerreyes, D.; Sardon, H.; Bella, F. Self-Healable Dynamic Poly(Urea-Urethane) Gel Electrolyte for Lithium Batteries. J. Mater. Chem. A 2022, 10, 12588–12596. DOI: 10.1039/D2TA02239G.
  • Jiang, L.; Liu, Z.; Lei, Y.; Yuan, Y.; Wu, B.; Lei, J. Sustainable Thermosetting Polyurea Vitrimers Based on a Catalyst-Free Process with Reprocessability, Permanent Shape Reconfiguration and Self-Healing Performance. ACS Appl. Polym. Mater. 2019, 1, 3261–3268. DOI: 10.1021/acsapm.9b00672.
  • Li, Y.; Wang, Y.; Wang, S.; Ye, Z.; Bian, C.; Xing, X.; Hong, T.; Jing, X. Highly Tunable and Robust Dynamic Polymer Networks via Conjugated–Hindered Urea Bonds. Macromolecules 2022, 55, 9091–9102. DOI: 10.1021/acs.macromol.2c00681.
  • Liu, W. X.; Yang, Z.; Qiao, Z.; Zhang, L.; Zhao, N.; Luo, S.; Xu, J. Dynamic Multiphase Semi-Crystalline Polymers Based on Thermally Reversible Pyrazole-Urea Bonds. Nat. Commun. 2019, 10, 4753. DOI: 10.1038/s41467-019-12766-6.
  • Erice, A.; Ruiz de Luzuriaga, A.; Matxain, J. M.; Ruipérez, F.; Asua, J. M.; Grande, H.-J.; Rekondo, A. Reprocessable and Recyclable Crosslinked Poly(Urea-Urethane)s Based on Dynamic Amine/Urea Exchange. Polymer 2018, 145, 127–136. DOI: 10.1016/j.polymer.2018.04.076.
  • Chen, B.; Liu, X.; Liu, J.; Feng, Z.; Zheng, X.; Wu, X.; Yang, C.; Liang, L. Intrinsically Self-Healing, Reprocessable and Recyclable Epoxy Thermosets Based on Dynamic Reversible Urea Bonds. React. Funct. Polym. 2022, 172, 105184. DOI: 10.1016/j.reactfunctpolym.2022.105184.
  • Zhou, Z.; Zeng, Y.; Yu, C.; Li, Q.; Zhang, F. Intrinsically Self-Healing and Stretchy Poly(Urethane-Urea) Elastomer Based on Dynamic Urea Bonds and Thiol-Ene Click Reaction. Mater. Chem. Phys. 2021, 267, 124642. DOI: 10.1016/j.matchemphys.2021.124642.
  • Peng, S.; Wang, Z.; Lin, J.; Miao, J. T.; Zheng, L.; Yang, Z.; Weng, Z.; Wu, L. Tailored and Highly Stretchable Sensor Prepared by Crosslinking an Enhanced 3D Printed UV‐Curable Sacrificial Mold. Adv. Funct. Mater. 2021, 31, 2008729. DOI: 10.1002/adfm.202008729.
  • Zhou, Z.; Zeng, Y.; Yu, C.; Chen, H.; Zhang, F. Mechanically Robust, Intrinsically Self-Healing Crosslinked Polymer Enabled by Dynamic Urea Bond Exchange Reaction. Smart Mater. Struct. 2020, 29, 115041. DOI: 10.1088/1361-665X/abb574.
  • Jun, S.; Kim, S. O.; Lee, H.-J.; Han, C. J.; Lee, C.-J.; Yu, Y.-T.; Lee, C.-R.; Ju, B.-K.; Kim, Y.; Kim, J.-W. Transparent, Pressure-Sensitive, and Healable e-Skin from a UV-Cured Polymer Comprising Dynamic Urea Bonds. J. Mater. Chem. A 2019, 7, 3101–3111. DOI: 10.1039/C8TA10765C.
  • Zhou, Z.; Wang, X.; Yu, H.; Yu, C.; Zhang, F. Dynamic Cross-Linked Polyurea/Polydopamine Nanocomposites for Photoresponsive Self-Healing and Photoactuation. Macromolecules 2022, 55, 2193–2201. DOI: 10.1021/acs.macromol.1c02534.
  • Zhao, B.; Li, L.; Hu, J.; Wang, H.; Mei, H.; Zheng, S. Self-Healable and Reprocessable Networks Involving Diblock Copolymer and Hindered Urea Bonds. Polymer 2022, 242, 124591. DOI: 10.1016/j.polymer.2022.124591.
  • Bin Rusayyis, M. A.; Torkelson, J. M. Reprocessable and Recyclable Chain-Growth Polymer Networks Based on Dynamic Hindered Urea Bonds. ACS Macro Lett. 2022, 11, 568–574. DOI: 10.1021/acsmacrolett.2c00045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.