680
Views
0
CrossRef citations to date
0
Altmetric
Feature Article

Emerging trends in olefin polymerization: a perspective

, , , , &
Pages 731-750 | Received 07 Sep 2023, Accepted 28 Sep 2023, Published online: 22 Oct 2023

References

  • Chikkali S. H., Ed. Metal Catalyzed Polymerization: Fundamentals to Applications; CRC Press; Taylor and Francis Group: Boca Raton, FL, 2017 and the references therein.
  • Hustad, P. D. Frontiers in Olefin Polymerization: Reinventing the World’s Most Common Synthetic Polymers. Science 2009, 325, 704–707. DOI: 10.1126/science.1174927.
  • Severn, J. R.; Chadwick, J. C., Eds. Tailor-Made Polymers; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2008.
  • Sauter, D. W.; Taoufik, M.; Boisson, C. Polyolefins, a Success Story. Polymers 2017, 9, 185. DOI: 10.3390/polym9060185.
  • Nakamura, A.; Ito, S.; Nozaki, K. Coordination-Insertion Copolymerization of Fundamental Polar Monomers. Chem. Rev. 2009, 109, 5215–5244. DOI: 10.1021/cr900079r.
  • Patel, K.; Chikkali, S. H.; Sivaram, S. Ultrahigh Molecular Weight Polyethylene: Catalysis, Structure, Properties, Processing and Applications. Prog. Polym. Sci. 2020, 109, 101290. DOI: 10.1016/j.progpolymsci.2020.101290.
  • Birajdar, R. S.; Chikkali, S. H. Insertion Copolymerization of Functional Olefins: Quo Vadis? Eur. Polym. J. 2021, 143, 110183. DOI: 10.1016/j.eurpolymj.2020.110183.
  • Hippi, U. 2005. Novel Functionalized Polyolefins as Compatibilizers in Polyolefin/Polyamide 6 Blends and Polyethylene/Metal Hydroxide Composites; Helsinki University of Technology: Espoo, Finland.
  • Anonymous. ASTM D4020-18, 2018. https://compass.astm.org/document/?contentCode=ASTM%7CD4020-18%7Cen-US&proxycl=https%3A//secure.astm.org&fromLogin=true (accessed Sep 2, 2023).
  • Wu, S. L.; Qiao, J.; Guan, J.; Chen, H. M.; Wang, T.; Wang, C.; Wang, Y. Nascent Disentangled UHMWPE: Origin, Synthesis, Processing, Performances and Applications. Eur. Polym. J. 2022, 184, 111799.
  • Padmanabhan, S.; Sarma, K. R.; Rupak, K.; Sharma, S. Synthesis of Ultra High Molecular Weight Polyethylene: A Differentiate Material for Specialty Applications. Mater. Sci. Eng. B 2010, 168, 132–135. DOI: 10.1016/j.mseb.2009.10.026.
  • Gaikwad, S. R.; Deshmukh, S. S.; Gonnade, R. G.; Rajamohanan, P. R.; Chikkali, S. H. Insertion Copolymerization of Difunctional Polar Vinyl Monomers with Ethylene. ACS Macro Lett. 2015, 4, 933–937. DOI: 10.1021/acsmacrolett.5b00562.
  • Zou, C.; Tan, C.; Chen, C. Heterogenization Strategies for Nickel Catalyzed Synthesis of Polyolefins and Composites. Acc. Mater. Res. 2023, 4, 496–506. DOI: 10.1021/accountsmr.2c00263.
  • Tan, C.; Zou, C.; Chen, C. Material Properties of Functional Polyethylenes from Transition-Metal-Catalyzed Ethylene–Polar Monomer Copolymerization. Macromolecules 2022, 55, 1910–1922. DOI: 10.1021/acs.macromol.2c00058.
  • Zou, C.; Wang, Q.; Si, G.; Chen, C. A Co-anchoring Strategy for the Synthesis of Polar Bimodal Polyethylene. Nat. Commun. 2023, 14, 1442. DOI: 10.1038/s41467-023-37152-1.
  • Chen, C. Designing Catalysts for Olefin Polymerization and Copolymerization: Beyond Electronic and Steric Tunning. Nat. Rev. Chem. 2018, 2, 6–14. DOI: 10.1038/s41570-018-0003-0.
  • Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization. ACS Catal. 2016, 6, 428–441. DOI: 10.1021/acscatal.5b02426.
  • Chen, Z.; Brookhart, M. Exploring Ethylene/Polar Vinyl Monomer Copolymerizations Using Ni and Pd–α-Diimine Catalysts. Acc. Chem. Res. 2018, 51, 1831–1839. DOI: 10.1021/acs.accounts.8b00225.
  • Mecking, S.; Schnitte, M. Neutral Nickel (II) Catalysts: From Hyper Branched Oligomers to Nano-Crystal Based Materials. Acc. Chem. Res. 2020, 53, 2738–2752. DOI: 10.1021/acs.accounts.0c00540.
  • Tan, C.; Chen, M.; Chen, C. ‘Catalyst + X’ strategies for Transition Metal-Catalyzed Olefin-Polar Monomer Copolymerization. Trends Chem. 2023, 5, 147–159. DOI: 10.1016/j.trechm.2022.12.007.
  • Tan, C.; Chen, C. Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers. Angew. Chem. Int. Ed. 2019, 58, 7192– 7200. DOI: 10.1002/anie.201814634.
  • Lippits, D. R.; Rastogi, S.; Talebi, S.; Bailly, C. Formation of Entanglements in Initially Disentangled Polymer Melt. Macromolecules 2006, 39, 8882–8885. DOI: 10.1021/ma062284z.
  • Gote, R. P.; Mandal, D.; Patel, K.; Chaudhuri, K.; Vinod, C. P.; Lele, A. K.; Chikkali, S. H. Judicious Reduction of Supported Ti Catalyst Enables Access to Disentangled Ultrahigh Molecular Weight Polyethylene. Macromolecules 2018, 51, 4541–4552. DOI: 10.1021/acs.macromol.8b00590.
  • Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra, P. J. Molar Mass and Molecular Weight Distribution Determination of UHMWPE Synthesized Using a Living Homogeneous Catalyst. Macromolecules 2010, 43, 2780–2788. DOI: 10.1021/ma902297b.
  • Collins Rice, C. G.; Buffet, J.-C.; Turner, Z. R.; O'Hare, D. Supported Permethylindenyl Titanium Catalysts for the Synthesis of Disentangled Ultra-High Molecular Weight Polyethylene (Dis UHMWPE). Chem. Commun. 2021, 57, 8600–8603. DOI: 10.1039/D1CC03418A.
  • Zhang, Z.; Kang, X.; Jiang, Y.; Cai, Z.; Li, S.; Cui, D. Access to Disentangled Ultrahigh Molecular Weight Polyethylene via a Binuclear Synergic Effect. Angew. Chem. 2023, 135, e202215582. DOI: 10.1002/ange.202215582.
  • Saito, J.; Mitani, M.; Mohri, J.; Yoshida, Y.; Matsui, S.; Ishii, S.; Kojoh, S.; Kashiwa, N.; Fujita, T. Living Polymerization of Ethylene with Titanium Complex Containing Two Phenoxy-Imine Chelate Ligands. Angew. Chem. Int. Ed. 2001, 40, 2918–2920. DOI: 10.1002/1521-3773(20010803)40:15<2918::AID-ANIE2918>3.0.CO;2-S.
  • Mitani, M.; Mohri, J.; Yoshida, Y.; Saito, J.; Ishii, S.; Tsuru, K.; Matsui, S.; Furuyama, R.; Nakano, T.; Tanaka, H.; et al. Living Polymerization of Ethylene Catalyzed by Titanium Complex Having Fluorine-Containing Phenoxy-Imine Chelate Ligands. J. Am. Chem. Soc. 2002, 124, 3327–3336. DOI: 10.1021/ja0117581.
  • Rastogi, S.; Yao, Y.; Ronca, S.; Bos, J.; Van Der Eem, J. Unprecedented High-Modulus High-Strength Tapes and Films of Ultrahigh Molecular Weight Polyethylene via Solvent-Free Route. Macromolecules 2011, 44, 5558–5568. DOI: 10.1021/ma200667m.
  • Yang, H.; van Ingen, Y.; Blom, B.; Rastogi, S.; Romano, D. Structural Modification of Phenoxyimine Titanium Complexes and Activation Studies with Alkyl Aluminum Compounds. ChemCatChem 2020, 12, 5209–5220. DOI: 10.1002/cctc.202000731.
  • Romano, D.; Andablo-Reyes, E. A.; Ronca, S.; Rastogi, S. Effect of a Cocatalyst Modifier in the Synthesis of Ultrahigh Molecular Weight Polyethylene Having Reduced Number of Entanglements. J. Polym. Sci. A Polym. Chem. 2013, 51, 1630–1635. DOI: 10.1002/pola.26534.
  • Romano, D.; Andablo-Reyes, E.; Ronca, S.; Rastogi, S. Aluminoxane Co-catalysts for the Activation of a Bis Phenoxyimine Titanium (IV) Catalyst in the Synthesis of Disentangled Ultra-High Molecular Weight Polyethylene. Polymer 2015, 74, 76–85. DOI: 10.1016/j.polymer.2015.07.039.
  • Ivanchev, S. S.; Ruppel’, E. I.; Ozerin, A. N. Optimization of the Conditions of Ethylene Polymerization into Reactor Powders of Ultra-High-Molecular-Weight Polyethylene Suitable for Solid-Phase Formation into Oriented Ultra-High-Strength and Ultra-High-Modulus Film Yarns. Dokl. Phys. Chem. 2016, 468, 89–92. DOI: 10.1134/S0012501616060026.
  • Forte, G.; Ronca, S. Synthesis of Disentangled Ultra-High Molecular Weight Polyethylene: Influence of Reaction Medium on Material Properties. Int. J. Polym. Sci. 2017, 2017, e7431419. DOI: 10.1155/2017/7431419.
  • Romano, D.; Tops, N.; Andablo-Reyes, E.; Ronca, S.; Rastogi, S. Influence of Polymerization Conditions on Melting Kinetics of Low Entangled UHMWPE and Its Implications on Mechanical Properties. Macromolecules 2014, 47, 4750–4760. DOI: 10.1021/ma5008122.
  • Ronca, S.; Forte, G.; Ailianou, A.; Kornfield, J. A.; Rastogi, S. Direct Route to Colloidal UHMWPE by Including LLDPE in Solution during Homogeneous Polymerization of Ethylene. ACS Macro Lett. 2012, 1, 1116–1120. DOI: 10.1021/mz300369x.
  • Tuskaev, V. A.; Gagieva, S. C.; Kurmaev, D. A.; Bogdanov, V. S.; Magomedov, K. F.; Mikhaylik, E. S.; Golubev, E. K.; Buzin, M. I.; Nikiforova, G. G.; Vasil’ev, V. G.; et al. Novel Titanium(IV) Diolate Complexes with Additional O-Donor as Precatalyst for the Synthesis of Ultrahigh Molecular Weight Polyethylene with Reduced Entanglement Density: Influence of Polymerization Conditions and Its Implications on Mechanical Properties. Appl. Organom. Chem. 2021, 35, e6256. DOI: 10.1002/aoc.6256.
  • Bodkhe, D. V.; Chikkali, S. H. Ti-Iminocarboxylate Catalyzed Polymerization of Ethylene to Highly Crystalline, Disentangled, Ultrahigh Molecular Weight Polyethylene. Eur. Polym. J. 2023, 182, 111725. DOI: 10.1016/j.eurpolymj.2022.111725.
  • Suo, H.; Faisca Phillips, A. M.; Satrudhar, M.; Martins, L. M. D. R. S.; da Silva, G. M. d F.; Pombeiro, A. J. L.; Han, M.; Sun, W.-H. Achieving Ultra-High Molecular Weight Polyethylenes by Vanadium Aroylhydrazine-Arylolates. J. Polym. Sci. 2023, 61, 482–490. DOI: 10.1002/pol.20220592.
  • Tan, C.; Chen, C. Nickel Catalysts for the Synthesis of Ultra-High Molecular Weight Polyethylene. Sci. Bull. 2020, 65, 1137–1138. DOI: 10.1016/j.scib.2020.04.009.
  • Liang, T.; Goudari, S. B.; Chen, C. A Simple and Versatile Nickel Platform for the Generation of Branched High Molecular Weight Polyolefins. Nat. Commun. 2020, 11, 372. DOI: 10.1038/s41467-019-14211-0.
  • Zou, C.; Si, G.; Chen, C. A General Strategy for Heterogenizing Olefin Polymerization Catalysts and the Synthesis of Polyolefins and Composites. Nat. Commun. 2022, 13, 1954.
  • Ma, Z.; Xu, M.; Zhu, N.; Tan, C.; Chen, C. Heterogeneous α‐Diimine Nickel Catalysts with Improved Catalytic Performance in Ethylene Polymerization. Chin. J. Chem. 2023, 41, 1155–1162. DOI: 10.1002/cjoc.202200785.
  • Schnitte, M.; Staiger, A.; Casper, L. A.; Mecking, S. Uniform Shape Monodisperse Single Chain Nanocrystals by Living Aqueous Catalytic Polymerization. Nat. Commun. 2019, 10, 2592. DOI: 10.1038/s41467-019-10692-1.
  • Kenyon, P.; Wörner, M.; Mecking, S. Controlled Polymerization in Polar Solvents to Ultrahigh Molecular Weight Polyethylene. J. Am. Chem. Soc. 2018, 140, 6685–6689. DOI: 10.1021/jacs.8b03223.
  • Wang, C.; Kang, X.; Mu, H.; Jian, Z. Positive Effect of Polar Solvents in Olefin Polymerization Catalysis. Macromolecules 2022, 55, 5441–5447. DOI: 10.1021/acs.macromol.2c00472.
  • Li, K.; Mu, H.; Kang, X.; Jian, Z. Suppression of Chain Transfer and Promotion of Chain Propagation in Neutral Anilinotropone Nickel Polymerization Catalysis. Macromolecules 2022, 55, 2533–2541. DOI: 10.1021/acs.macromol.2c00091.
  • Boaen, N. K.; Hillmyer, M. A. Post-Polymerization Functionalization of Polyolefins. Chem. Soc. Rev. 2005, 34, 267. DOI: 10.1039/b311405h.
  • Watson, M. D.; Wagener, K. B. Quantitative Ring-Closing Metathesis of Polyolefins. Macromolecules 2000, 33, 8963–8970. DOI: 10.1021/ma0010332.
  • Kermagoret, A.; Debuigne, A.; Jerome, C.; Detrembleur, C. Precision Design of Ethylene and Polar Monomer-Based Copolymers by Organometallic Mediated Radical Polymerization. Nat. Chem. 2014, 6, 179–187. DOI: 10.1038/nchem.1850.
  • Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethlyene and α-Olefins with Methyl Acrylate. J. Am. Chem. Soc. 1996, 118, 267–268.
  • Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Ortho-Phosphinobenzenesulfonate: A superb Ligand for Palladium-Catalyzed Coordination-Insertion Copolymerization of Vinyl Monomers. Acc. Chem. Res. 2013, 46, 1438–1449. DOI: 10.1021/ar300256h.
  • Neuwald, B.; Olscher, F.; Gottker-Schnetmann, I.; Mecking, S. Limits of Activity: Weakly Coordinating Ligands in Arylphosphinesulfoanto Palladium (II) Polymerization Catalysts. Organometallics 2012, 31, 3128–3137. DOI: 10.1021/om3000339.
  • Gaikwad, S. R.; Deshmukh, S. S.; Koshti, V. S.; Poddar, S.; Gonnade, R. G.; Rajamohanan, P. R.; Chikkali, S. H. Reactivity of Difunctional Monomers and Ethylene Copolymerization: A Comprehensive Account. Macromolecules 2017, 50, 5748–5758. DOI: 10.1021/acs.macromol.7b01356.
  • Wucher, P.; Caporaso, L.; Roesle, P.; Ragone, F.; Cavallo, L.; Mecking, S.; Göttker-Schnetmann, I. Breaking the Regioselectivity Rule for Acrylate Insertion in the Mizoroki-Heck Coupling. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 8955–8959. DOI: 10.1073/pnas.1101497108.
  • Yasuda, H.; Nakano, R.; Ito, S.; Nozaki, K. Palladium/IzQO-Catalyzed Coordination-Insertion Copolymerization of Ethylene and 1,1-Disubstituted Ethylenes Bearing a Polar Functional Groups. J. Am. Chem. Soc. 2018, 140, 1876–1883. DOI: 10.1021/jacs.7b12593.
  • Gaikwad, S. R.; Patel, K.; Deshmukh, S. S.; Mote, N. R.; Birajdar, R. S.; Pandole, S. P.; Chugh, J.; Chikkali, S. H. Palladium-Catalyzed Insertion of Ethylene and 1,1-Disubstituted Difunctional Olefins: An Experimental and Computational Study. ChemPlusChem 2020, 85, 1200–1209.
  • Wang, X.; Zhang, Y.; Wang, F.; Pan, L.; Wang, B.; Li, Y. Robust and Reactive Neutral Nickel Catalysts for Ethylene Polymerization and Copolymerization with a Challenging 1,1-Disubstituted Difunctional Polar Monomer. ACS Catal. 2021, 11, 2902–2911. DOI: 10.1021/acscatal.0c04450.
  • Chen, M.; Chen, C. Direct and Tandem Routes for the Copolymerization of Ethylene with Polar Functionalized Internal Olefins. Angew. Chem. Int. Ed. 2020, 59, 1206–1210. DOI: 10.1002/anie.201913088.
  • Xu, M.; Chen, C. A Disubstituted-Norbornene-Based Comonomer Strategy to Address Polar Monomer Problem. Sci. Bull. 2021, 66, 1429–1436. DOI: 10.1016/j.scib.2021.03.012.
  • Pandey, S.; Rajput, B. S.; Chikkali, S. H. Refining of Plant Oils and Sugars to Platform Chemicals, Monomers and Polymers. Green Chem. 2021, 23, 4255–4295. DOI: 10.1039/D1GC00955A.
  • Parisi, L. R.; Scheibel, D. M.; Lin, S.; Bennett, E. M.; Lodge, J. M.; Miri, M. J. Eugenol as Renewable Comonomer Compared to 4-Penten-1-Ol in Ethylene Copolymerization Using a Palladium Aryl Sulfonate Catalyst. Polymer 2017, 114, 319–328. DOI: 10.1016/j.polymer.2017.03.009.
  • Na, Y.; Chen, C. Catechol‐Functionalized Polyolefins. Angew. Chem. Int. Ed. 2020, 59, 7953–7959. DOI: 10.1002/anie.202000848.
  • Cui, X.; Gu, G.; Li, C.; Liu, N.; Gong, Y.; Liu, B. Synthesis and Properties of Biomass Eugenol-Functionalized Isotactic Poly(1-Butene)S. Polymer 2020, 202, 122739. DOI: 10.1016/j.polymer.2020.122739.
  • Du, C.; Zhong, L.; Gao, J.; Zhong, S.; Liao, H.; Gao, H.; Wu, Q. Living (Co)Polymerization of Ethylene and Bio-Based Furfuryl Acrylate Using Dibenzobarrelene Derived α-Diimine Palladium Catalysts. Polym. Chem. 2019, 10, 2029–2038. DOI: 10.1039/C9PY00126C.
  • Rajput, B. S.; Pawal, S. B.; Bodkhe, D. V.; Rao, IN.; Sainath, A. V. S.; Chikkali, S. H. Renewing Polyethylene: Insertion Copolymerization of Sugar Derived Hydrophilic Monomers with Ethylene. Eur. Polym. J. 2020, 134, 109775. DOI: 10.1016/j.eurpolymj.2020.109775.
  • Zong, Y.; Wang, C.; Zhang, Y.; Jian, Z. Polar-Functionalized Polyethylenes Enabled by Palladium-Catalyzed Copolymerization of Ethylene and Butadiene/Bio-Based Alcohol-Derived Monomers. Polymers 2023, 15, 1044. DOI: 10.3390/polym15041044.
  • Xu, M.; Chen, A.; Li, W.; Li, Y.; Zou, C.; Chen, C. Efficient Synthesis of Polar Functionalized Polyolefins with High Biomass Content. Macromolecules 2023, 56, 1372–1378. DOI: 10.1021/acs.macromol.3c00086.
  • Chen, J.; Wang, W.; Pan, Y.; Peng, D.; Li, Y.; Zou, C. Palladium-Catalyzed Synthesis of Oil-Based Functionalized Polyolefins. Polym. Chem. 2023, 1, 1103–1109. DOI: 10.1039/d3py00012e.
  • Plummer, C. M.; Zhou, H.; Li, S.; Zhong, H.; Sun, Z.; Bariashir, C.; Sun, W. H.; Huang, H.; Liu, L.; Chen, Y. A Direct Functionalization of Polyolefins for Blend Compatibilization by an Insertion of 1,1-Bis (Phenylsulfonyl) Ethylene (BPSE). Polym. Chem. 2019, 10, 3325–3333. DOI: 10.1039/C9PY00599D.
  • Tang, W.; Tang, J.; Yuan, H.; Jin, R. The Compatibilization Effect of Ethylene/Styrene Interpolymer on Polystyrene/Polyethylene Blends. J. Polym. Sci. B Polym. Phys. 2007, 45, 2136–2146. DOI: 10.1002/polb.21218.
  • Wang, D.; Li, Y.; Xie, X. M.; Guo, B. H. Compatibilization and Morphology Development of Immiscible Ternary Polymer Blends. Polymer 2011, 52, 191–200. DOI: 10.1016/j.polymer.2010.11.019.
  • Li, H.; Xie, X. M. Morphology Development and Superior Mechanical Properties of PP/PA6/SEBS Ternary Blends Compatibilized by Using a Highly Efficient Multi-Phase Compatibilizer. Polymer 2017, 108, 1–10. DOI: 10.1016/j.polymer.2016.11.044.
  • Tan, C.; Zou, C.; Chen, C. An Ionic Cluster Strategy for Performance Improvements and Product Morphology Control in Metal-Catalyzed Olefin-Polar Monomer Copolymerization. J. Am. Chem. Soc. 2022, 144, 2245–2254.
  • Li, J.; Peng, D.; Tan, C.; Chen, C. Outer‐Shell Self‐Supported Nickel Catalysts for the Synthesis of Polyolefin Composites. Angew. Chem. Int. Ed. 2023, 62, e202300359. DOI: 10.1002/anie.202300359.
  • Birajdar, R. S.; Gonnade, R. G.; Pol, H. V.; Prabhu, B. M.; Rokade, D.; Nandimath, S.; Chikkali, S. H. Palladium Catalyzed Polar Solvent Empowered Synthesis of Hyper-Branched Ethylene Oligomers and Their Application. Polym. Chem. 2023, 14, 3239–3251. DOI: 10.1039/D3PY00311F.
  • Sharma, V.; Paulbudhe, U.; Bachhar, N.; Chikkali, S. H.; Kumaraswamy, G. Polyethylene-Grafted Sheet-like Silsesquioxane Nanocomposites with Unprecedented Adhesion to Polar Substrates. ACS Appl. Polym. Mater. 2023, 5, 5972–5983. DOI: 10.1021/acsapm.3c00649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.