129
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanohybrid materials using gold nanoparticles and RAFT-synthesized polymers for biomedical applications

Pages 841-855 | Received 22 Aug 2023, Accepted 10 Oct 2023, Published online: 26 Oct 2023

References

  • Ryan, M. D.; Ijeoma, U. F. Ultrasmall-in-Nano: Why Size Matters. Nanomaterials. 2022, 12, 2476.
  • Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for Optical Data Storage. Nat. Rev. Mater. 2016, 1, 16070. DOI:10.1038/natrevmats.2016.70.
  • Wail, Z. A.; Kamil, P. M.; Fatimah, S.; Nashrah, N.; Ko, G. Y. Recent Advances in Hybrid Organic-Inorganic Materials with Spatial Architecture for State-of-the-Art Applications. Prog. Mater. Sci. 2020, 112, 100663. DOI:10.1016/j.pmatsci.2020.100663.
  • Park, W.; Shin, H.; Choi, B.; Rhim, W.-K.; Na, K.; Han, D. K. Advanced Hybrid Nanomaterials for Biomedical Applications. Prog. Mater. Sci. 2020, 114, 100686. DOI:10.1016/j.pmatsci.2020.100686.
  • Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. DOI:10.1080/17518253.2020.1802517.
  • Milewska, S.; Niemirowicz-Laskowska, K.; Siemiaszko, G.; Nowicki, P.; Wilczewska, A. Z.; Car, H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int. J. Nanomed. 2021, 16, 6593–6644. DOI:10.2147/IJN.S323831.
  • Rahim, M.; Mas Haris, M. R. H.; Saqib, N. U. An Overview of Polymeric Nano-Biocomposites as Targeted and Controlled-Release Devices. Biophys. Rev. 2020, 12, 1223–1231. DOI:10.1007/s12551-020-00750-0.
  • Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Control. Release. 2021, 332, 312–336. DOI:10.1016/j.jconrel.2021.02.031.
  • Ganguly, M. D. Smart Polymeric Nanostructures for Targeted Delivery of Therapeutics. J. Macromol Sci. Part A: Pure Appl. Chem. 2021, 58, 271–286.
  • Maiti, C.; Parida, S.; Kayal, S.; Maiti, S.; Mandal, M.; Dhara, D. Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Appl. Mater. Interf. 2018, 10, 5318–5330. DOI:10.1021/acsami.7b18245.
  • Banerjee, R.; Maiti, S.; Dey, D.; Dhara, D. Polymeric Nanostructures with pH-Labile Core for Controlled Drug Release. J. Colloid Interf. Sci. 2016, 462, 176–182. DOI:10.1016/j.jcis.2015.09.068.
  • Yu, Z.; Shen, X.; Yu, H.; Tu, H.; Chittasupho, C.; Zhao, Y. Smart Polymeric Nanoparticles in Cancer Immunotherapy. Pharmaceutics. 2023, 15, 775. DOI:10.3390/pharmaceutics15030775.
  • Repenko, T.; Rix, A.; Ludwanowski, S.; Go, D.; Kiessling, F.; Lederle, W.; Kuehne, A. J. C. Bio-Degradable Highly Fluorescent Conjugated Polymer Nanoparticles for Bio-Medical Imaging Applications. Nature Commun. 2017, 8, 470.
  • Duarte-Rodriguez, M. D.; Cortez-Lemus, N. A.; Licea-Claverie, A.; Licea-Rodriguez, J.; Méndez, E. R. Dual Responsive Polymersomes for Gold Nanorod and Doxorubicin Encapsulation: Nanomaterials with Potential Use as Smart Drug Delivery Systems. Polymers (Basel). 2019, 11, 939. DOI:10.3390/polym11060939.
  • Li, S.; Lin, M. M.; Toprak, M. S.; Kim, D. K.; Muhammed, M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010, 1, 5214. DOI:10.3402/nano.v1i0.5214.
  • Shameem, M. M.; Sasikanth, S. M.; Annamalai, R.; Raman, R. G. A Brief Review on Polymer Nanocomposites and Its Applications. Mater. Today: Proc. 2021, 45, 2536–2539. DOI:10.1016/j.matpr.2020.11.254.
  • Kumar, Sandeep, Nehra, Monika, Dilbaghi, Neeraj, Tankeshwar, K., Kim, Ki-Hyun, Sarita, Recent Advances and Remaining Challenges for Polymeric Nanocomposites in Healthcare Applications. Progr. Poly. Sci. 2018, 80, 1–38. DOI:10.1016/j.progpolymsci.2018.03.001.
  • Dutta, S.; Parida, S.; Maiti, C.; Banerjee, R.; Mandal, M.; Dhara, D. Polymer Grafted Magnetic Nanoparticles for Delivery of Anticancer Drug at Lower pH and Elevated Temperature. J. Colloid Interf. Sci. 2016, 467, 70–80. DOI:10.1016/j.jcis.2016.01.008.
  • Zhang, N.-N.; Shen, X.; Liu, K.; Nie, Z.; Kumacheva, E. Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly. Acc. Chem. Res. 2022, 55, 1503–1513. DOI:10.1021/acs.accounts.2c00066.
  • Bera, S.; Pal, J.; Sahoo, S.; Dhara, D. Stimuli-Responsive Polymer Stabilized Iron Oxide Nanoparticle as Green Catalyst for Styrene Oxidation Reaction. ACS Appl. Polym. Mater. 2023, 5, 720–730. DOI:10.1021/acsapm.2c01732.
  • Boisselier, E.; Astruc, D. Gold Nanoparticles in Nanomedicine: Preparations, Imaging, Diagnostics, Therapies and Toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782. DOI:10.1039/b806051g.
  • Sargazi, S.; Laraib, U.; Er, S.; Rahdar, A.; Hassanisaadi, M.; Zafar, M. N.; Díez-Pascual, A. M.; Bilal, M. Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. Nanomaterials. 2022, 12, 1102. DOI:10.3390/nano12071102.
  • Goddard, Z. R.; Marín, M. J.; Russell, D. A.; Searcey, M. Active Targeting of Gold Nanoparticles as Cancer Therapeutics. Chem. Soc. Rev. 2020, 49, 8774–8789. DOI:10.1039/d0cs01121e.
  • Li, X.; Zhang, Y.; Liu, G. K.; Luo, Z.; Zhou, L.; Xue, Y.; Liu, M. Recent Progress in the Applications of Gold-Based Nanoparticles towards Tumor-Targeted Imaging and Therapy. RSC Adv. 2022, 12, 7635–7651. DOI:10.1039/d2ra00566b.
  • Zhang, R.; Kiessling, F.; Lammers, T.; Pallares, R. M. Clinical Translation of Gold Nanoparticles. Drug Deliv. Transl. Res. 2023, 13, 378–385. DOI:10.1007/s13346-022-01232-4.
  • Alle, M.; Sharma, G.; Lee, S.-H.; Kim, J.-C. Next-Generation Engineered Nanogold for Multimodal Cancer Therapy and Imaging: A Clinical Perspectives. J. Nanobiotech. 2022, 20, 222. DOI:10.1186/s12951-022-01402-z.
  • Huang, X.; El-Sayed, M. A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. DOI:10.1016/j.jare.2010.02.002.
  • Braunecker, W. A.; Matyjaszewski, K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Prog. Polym. Sci. 2007, 32, 93–146. DOI:10.1016/j.progpolymsci.2006.11.002.
  • Grubbs, R. B.; Grubbs, R. H. 50th Anniversary Perspective: Living Polymerization-Emphasizing the Molecule in Macromolecules. Macromolecules. 2017, 50, 6979–6997. DOI:10.1021/acs.macromol.7b01440.
  • Parkatzidis, K.; Wang, H. S.; Truong, N. P.; Anastasaki, A. Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem. 2020, 6, 1575–1588. DOI:10.1016/j.chempr.2020.06.014.
  • Zetterlund, P. B.; Thickett, S. C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem. Rev. 2015, 115, 9745–9800. DOI:10.1021/cr500625k.
  • Perrier, S. 50th Anniversary Perspective: RAFT Polymerization – A User Guide. Macromolecules. 2017, 50, 7433–7447. DOI:10.1021/acs.macromol.7b00767.
  • Moad, G.; Chiefari, J.; Chong, Y.  K.; Krstina, J.; Mayadunne Roshan, T.  A.; Postma, A.; Rizzardo, E.; Thang, S. H. Living Free Radical Polymerization with Reversible Addition – Fragmentation Chain Transfer (the Life of RAFT). Polym. Int. 2000, 49, 993–1001. DOI:10.1002/1097-0126(200009)49:9<993::AID-PI506>3.0.CO;2-6.
  • Nothling, M. D.; Fu, Q.; Reyhani, A.; Allison-Logan, S.; Jung, K.; Zhu, J.; Kamigaito, M.; Boyer, C.; Qiao, G. G. Progress and Perspectives beyond Traditional RAFT Polymerization. Adv. Sci. (Weinh). 2020, 7, 2001656. DOI:10.1002/advs.202001656.
  • Truong, N. P.; Jones, G. R.; Bradford Kate, G. E.; Konkolewicz, D.; Anastasaki, A. A Comparison of RAFT and ATRP Methods for Controlled Radical Polymerization. Nat. Rev. Chem. 2021, 5, 859–869. DOI:10.1038/s41570-021-00328-8.
  • Tilottama, B.; Manojkumar, K.; Haribabu, P. M.; Vijayakrishna, K. A Short Review on RAFT Polymerization of Less Activated Monomers. J. Macromol. Sci., Part A: Pure and Appl. Chem. 2022, 59, 180–201. DOI:10.1080/10601325.2021.2024076.
  • Benaglia, M.; Rizzardo, E.; Alberti, A.; Guerra, M. Searching for More Effective Agents and Conditions for the RAFT Polymerization of MMA: Influence of Dithioester Substituents, Solvent, and Temperature. Macromolecules. 2005, 38, 3129–3140. DOI:10.1021/ma0480650.
  • Zhou, J.; Yao, H.; Ma, J. Recent Advances in RAFT-Mediated Surfactant-Free Emulsion Polymerization. Polym. Chem. 2018, 9, 2532–2561. DOI:10.1039/C8PY00065D.
  • Gardoni, G.; Manfredini, N.; Monzani, M.; Sponchioni, M.; Moscatelli, D. Thermoresponsive Modular Nano-Objects via RAFT Dispersion Polymerization in a Non-Polar Solvent. ACS Appl. Polym. Mater. 2023, 5, 494–503. DOI:10.1021/acsapm.2c01598.
  • Bray, C.; Li, G.; Postma, A.; Lisa, A.; Strover, T.; Wang, J.; Moad, G. Initiation of RAFT Polymerization: Electrochemically Initiated RAFT Polymerization in Emulsion (Emulsion eRAFT), and Direct PhotoRAFT Polymerization of Liquid Crystalline Monomers. Aust. J. Chem. 2021, 74, 56–64. DOI:10.1071/CH20260.
  • Pan, X.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated Controlled Radical Polymerization. Prog. Polym. Sci. 2016, 62, 73–125. DOI:10.1016/j.progpolymsci.2016.06.005.
  • Zetterlund, P. B.; Perrier, S. RAFT Polymerization under Microwave Irradiation: Toward Mechanistic Understanding. Macromolecules. 2011, 44, 1340–1346. DOI:10.1021/ma102689d.
  • Yuan, B.; Huang, T.; Lv, X.; Jiang, L.; Sun, X.; Zhang, Y.; Tang, J. Bioenhanced Rapid Redox Initiation for RAFT Polymerization in the Air. Macromol. Rapid Comm. 2022, 43, 2200218.
  • Allegrezza, M. L.; Konkolewicz, D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett. 2021, 10, 433–446. DOI:10.1021/acsmacrolett.1c00046.
  • Semsarilar, M.; Abetz, V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)Polymers. Macromol. Chem. Phys. 2021, 222, 2000311.,.
  • Clothier, G. K. K.; Guimarães, T. R.; Thompson, S. W.; Rho, J. Y.; Perrier, S.; Moad, G.; Zetterlund, P. B. Multiblock Copolymer Synthesis via RAFT Emulsion Polymerization. Chem. Soc. Rev. 2023, 52, 3438–3469. DOI:10.1039/d2cs00115b.
  • Peng, W.; Cai, Y.; Fanslau, L.; Vana, P. Nanoengineering with RAFT Polymers: From Nanocomposite Design to Applications. Polym. Chem. 2021, 12, 6198–6229. DOI:10.1039/D1PY01172C.
  • Fairbanks, B. D.; Gunatillake, P. A.; Meagher, L. Biomedical Applications of Polymers Derived by Reversible Addition Fragmentation Chain-Transfer (RAFT). Adv. Drug Deliv. Rev. 2015, 91, 141–152. DOI:10.1016/j.addr.2015.05.016.
  • Roy, S. G.; De, P. Facile RAFT Synthesis of Side-Chain Amino Acids Containing pH-Responsive Hyperbranched and Star Architectures. Polym. Chem. 2014, 5, 6365–6378. DOI:10.1039/C4PY00766B.
  • Huang, X.; Hu, J.; Li, Y.; Xin, F.; Qiao, R.; Davis, T. P. Engineering Organic/Inorganic Nanohybrids through RAFT Polymerization for Biomedical Applications. Biomacromolecules. 2019, 20, 4243–4257. DOI:10.1021/acs.biomac.9b01158.
  • Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. RAFT Agent Design and Synthesis. Macromolecules 2012, 45, 5321–5342. DOI:10.1021/ma300410v.
  • Destarac, M. On the Critical Role of RAFT Agent Design in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Polym. Rev. 2011, 51, 163–187. DOI:10.1080/15583724.2011.568130.
  • Willcock, H.; O'Reilly, R. K. End Group Removal and Modification of RAFT Polymers. Polym. Chem. 2010, 1, 149–157. DOI:10.1039/B9PY00340A.
  • Destarac, M. Industrial Development of Reversible-Deactivation Radical Polymerization: Is the Induction Period over? Polym. Chem. 2018, 9, 4947–4967. DOI:10.1039/C8PY00970H.
  • Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55. DOI:10.1039/df9511100055.
  • Sivaraman, S. K.; Kumar, S.; Santhanam, V. Monodisperse Sub-10 nm Gold Nanoparticles by Reversing the Order of Addition in Turkevich Method – the Role of Chloroauric Acid. J. Colloid Interf. Sci. 2011, 361, 543–547. DOI:10.1016/j.jcis.2011.06.015.
  • Schulz, F.; Homolka, T.; Bastús, N. G.; Puntes, V.; Weller, H.; Vossmeyer, T. Little Adjustments Significantly Improve the Turkevich Synthesis of Gold Nanoparticles. Langmuir. 2014, 30, 10779–10784. DOI:10.1021/la503209b.
  • Song, L.; Zhang, X.; Liu, J.; Li, X. Preparation of Stable Gold Nanoparticles by Using Diblock Copolymer Mixture as Encapsulating Agent. Polym. Sci. Ser. B. 2014, 56, 675–680. DOI:10.1134/S1560090414050133.
  • Gupta, A.; Moyano, D. F.; Parnsubsakul, A.; Papadopoulos, A.; Wang, L. S.; Landis, R. F.; Das, R.; Rotello, V. M. Ultrastable and Biofunctionalizable Gold Nanoparticles. ACS Appl. Mater. Interf. 2016, 8, 14096–14101. DOI:10.1021/acsami.6b02548.
  • Chen, Y.; Xianyu, Y.; Jiang, X. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Acc. Chem. Res. 2017, 50, 310–319. DOI:10.1021/acs.accounts.6b00506.
  • Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020, 8, 990. DOI:10.3389/fbioe.2020.00990.
  • Ko, W.-C.; Wang, S.-J.; Hsiao, C.-Y.; Hung, C.-T.; Hsu, Y.-J.; Chang, D.-C.; Hung, C.-F. Pharmacological Role of Functionalized Gold Nanoparticles in Disease Applications. Molecules. 2022, 27, 1551. DOI:10.3390/molecules27051551.
  • Kin, F. T.; Lionel, L. A. I.; Palanirajan, V. K. Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS Appl. Bio Mater. 2023, 6, 2944–2981. DOI:10.1021/acsabm.3c00202.
  • Gao, J.; Huang, X.; Liu, H.; Zan, F.; Ren, J. Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging. Langmuir. 2012, 28, 4464–4471. DOI:10.1021/la204289k.
  • Zhong, C. J.; Brush, R. C.; Anderegg, J.; Porter, M. D. Organosulfur Monolayers at Gold Surfaces: Reexamination of the Case for Sulfide Adsorption and Implications to the Formation of Monolayers from Thiols and Disulfides. Langmuir. 1999, 15, 518–525. DOI:10.1021/la980901+.
  • Biebuyck, H. A.; Whitesides, G. M. Interchange between Monolayers on Gold Formed from Unsymmetrical Disulfides and Solutions of Thiols: Evidence for Sulfur-Sulfur Bond Cleavage by Gold Metal. Langmuir. 1993, 9, 1766–1770. DOI:10.1021/la00031a025.
  • Heister, K.; Allara, D. L.; Bahnck, K.; Frey, S.; Zharnikov, M.; Grunze, M. Deviations from 1:1 Compositions in Self-Assembled Monolayers Formed from Adsorption of Asymmetric Dialkyl Disulfides on Gold. Langmuir. 1999, 15, 5440–5443. DOI:10.1021/la9902385.
  • Tao, Y.-T.; Pandiaraju, S.; Lin, W.-L.; Chen, L.-J. Self-Assembled Monolayers of Thioalkanoate on Ag and Au Surfaces: Hydrolysis and Rearrangement at the Interface. Langmuir. 1998, 14, 145–150. DOI:10.1021/la970912n.
  • Dishner, M. H.; Hemminger, J. C.; Feher, F. J. Formation of a Self-Assembled Monolayer by Adsorption of Thiophene on Au(111) and Its Photooxidation. Langmuir. 1996, 12, 6176–6178. DOI:10.1021/la960840k.
  • Lee, T. C.; Hounihan, D. J.; Colorado, R.; Park, J. S.; Lee, T. R. Stability of Aliphatic Dithiocarboxylic Acid Self-Assembled Monolayers on Gold. J. Phys. Chem. B. 2004, 108, 2648–2653. DOI:10.1021/jp0370066.
  • Ihs, A.; Uvdal, K.; Liedberg, B. Infrared and Photoelectron Spectroscopic Studies of Ethyl and Octyl Xanthate Ions Adsorbed on Metallic and Sulfidized Gold Surfaces. Langmuir. 1993, 9, 733–739. DOI:10.1021/la00027a021.
  • Mielczarski, J. A.; Yoon, R. H. Spectroscopic Studies of the Structure of the Adsorption Layer of Thionocarbamate. 2. On Cuprous Sulphide. Langmuir. 1991, 7, 101–108. DOI:10.1021/la00049a020.
  • Zhao, Y.; Pérez-Segarra, W.; Shi, Q.; Wei, A. Dithiocarbamate Assembly on Gold. J. Am. Chem. Soc. 2005, 127, 7328–7329. DOI:10.1021/ja050432f.
  • Wu, Y.; Zuo, F.; Lin, Y.; Zhou, Y.; Zheng, Z.; Ding, X. Green and Facile Synthesis of Gold Nanoparticles Stabilized by Chitosan. J. Macromol. Sci. A: Pure Appl. Chem. 2014, 51, 441–446. DOI:10.1080/10601325.2014.893142.
  • Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the Folate Receptor for Active Targeting of Cancer Nanotherapeutics. Nanoreviews. 2012, 3, 18496. DOI:10.3402/nano.v3i0.18496.
  • Ali, G. A.-D.; Ali, Z. A.-S.; Ghassan, M. S.; Khalil, A. K.; Khawla, S. K.; Hanady, S. A. A.-S.; Elsadig, M. A. Immobilization of l-Asparaginase on Gold Nanoparticles for Novel Drug Delivery Approach as anti-Cancer Agent against Human Breast Carcinoma Cells. J. Mater. Res. Technol. 2020, 9, 15394–15411. DOI:10.1016/j.jmrt.2020.10.021.
  • Narain, R.; Housni, A.; Gody, G.; Boullanger, P.; Charreyre, M.-T.; Delair, T. Preparation of Biotinylated Glyconanoparticles via a Photochemical Process and Study of Their Bioconjugation to Streptavidin. Langmuir. 2007, 23, 12835–12841. DOI:10.1021/la702378n.
  • Imran, M.; Hameed, A.; Hafizur, R. M.; Ali, I.; Roome, T.; Shah,.; M. R.;,S. Fabrication of Xanthan Stabilized Green Gold Nanoparticles Based Tolbutamide Delivery System for Enhanced Insulin Secretion in Mice Pancreatic Islets. J. Macromol. Sci. A: Pure Appl. Chem. 2018, 55, 729–735. DOI:10.1080/10601325.2018.1510290.
  • Shan, J.; Tenhu, H. Recent Advances in Polymer Protected Gold Nanoparticles: Synthesis, Properties and Applications. Chem. Commun. (Camb). 2007, 44, 4580–4598. DOI:10.1039/b707740h.
  • Luk, B. T.; Zhang, L. Current Advances in Polymer-Based Nanotheranostics for Cancer Treatment and Diagnosis. ACS Appl. Mater. Interf. 2014, 6, 21859–21873. DOI:10.1021/am5036225.
  • Capek, I. Polymer Decorated Gold Nanoparticles in Nanomedicine Conjugates. Adv. Colloid Interf. Sci. 2017, 249, 386–399. DOI:10.1016/j.cis.2017.01.007.
  • Li, D.; He, Q.; Li, J. Smart Core/Shell Nanocomposites: Intelligent Polymers Modified Gold Nanoparticles. Adv. Colloid Interf. Sci. 2009, 149, 28–38. DOI:10.1016/j.cis.2008.12.007.
  • Kumar, P. P. P.; Lim, D. K. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics. 2021, 14, 70. DOI:10.3390/pharmaceutics14010070.
  • Mayer, A. B. R.; Markt, J. E.; Haldar, U.; Sayala, K. D.; Sivaprakasam, K.; Ramakrishnan, L.; De, P. Interfacial Polycondensation-Derived Side-Chain Poly(Ethylene Glycol)-Containing Water-Soluble Polysulfide Weak-Link Polymers as Stabilizer for Gold Nanoparticles. React. Funct. Polym. 2017, 115, 10–17. DOI:10.1016/j.reactfunctpolym.2017.03.015.
  • Duwez, A.-S.; Guillet, P.; Colard, C.; Gohy, J.-F.; Fustin, C.-A. Dithioesters and Trithiocarbonates as Anchoring Groups for the “Grafting-To” Approach. Macromolecules. 2006, 39, 2729–2731. DOI:10.1021/ma0602829.
  • Glaria, A.; Beija, M.; Bordes, R.; Destarac, M.; Marty, J. D. Understanding the Role of ω-End Groups and Molecular Weight in the Interaction of PNIPAM with Gold Surfaces. Chem. Mater. 2013, 25, 1868–1876. DOI:10.1021/cm400480p.
  • Zoppe, J. O.; Ataman, N. C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318. DOI:10.1021/acs.chemrev.6b00314.
  • Pereira, S. O.; Barros-Timmons, A.; Trindade, T. A. Comparative Study of Chemical Routes for Coating Gold Nanoparticles via Controlled RAFT Emulsion Polymerization. Part. Part. Syst. Charact. 2017, 34, 1600202.
  • Wang, Y.-X.; Li, Y.; Qiao, S.-H.; Kang, J.; Shen, Z.-L.; Zhang, N.-N.; An, Z.; Wang, X.; Liu, K. Polymers via Reversible Addition Fragmentation Chain Transfer Polymerization with High Thiol End-Group Fidelity for Effective Grafting-To Gold Nanoparticles. J. Phys. Chem. Lett. 2021, 12, 4713–4721. DOI:10.1021/acs.jpclett.1c01039.
  • Ebeling, B.; Vana, P. RAFT-Polymers with Single and Multiple Trithiocarbonate Groups as Uniform Gold-Nanoparticle Coatings. Macromolecules. 2013, 46, 4862–4871. DOI:10.1021/ma4008626.
  • Rossner, C.; Ebeling, B.; Vana, P. Spherical Gold-Nanoparticle Assemblies with Tunable Interparticle Distances Mediated by Multifunctional RAFT Polymers. ACS Macro Lett. 2013, 2, 1073–1076. DOI:10.1021/mz400556q.
  • Rossner, C.; Glatter, O.; Saldanha, O.; Köster, S.; Vana, P. The Structure of Gold-Nanoparticle Networks Cross-Linked by Di- and Multifunctional RAFT Oligomers. Langmuir. 2015, 31, 10573–10582. DOI:10.1021/acs.langmuir.5b02699.
  • Peng, W.; Rossner, C.; Roddatis, V.; Vana, P. Gold-Planet-Silver-Satellite Nanostructures Using RAFT Star Polymer. ACS Macro Lett. 2016, 5, 1227–1231. DOI:10.1021/acsmacrolett.6b00681.
  • Hoffman, A. S. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16. DOI:10.1016/j.addr.2012.11.004.
  • Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. DOI:10.1039/C6PY01585A.
  • Hossam, S. E.-S.; Ahmed, M. A.-A.; Tarek, A. A.; Khalid, M. E.-S.; Torchilin, V. P. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano. 2018, 12, 10636–10664. DOI:10.1021/acsnano.8b06104.
  • Bauri, K.; Nandi, M.; De, P. Amino Acid-Derived Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2018, 9, 1257–1287. DOI:10.1039/C7PY02014G.
  • Lombardo, D.; Kiselev, M. A.; Caccamo, M. T. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J. Nanomater. 2019, 2019, 1–26. DOI:10.1155/2019/3702518.
  • Shi, L.; Zhang, J.; Zhao, M.; Tang, S.; Cheng, X.; Zhang, W.; Li, W.; Liu, X.; Peng, H.; Wang, Q. Effects of Polyethylene Glycol on the Surface of Nanoparticles for Targeted Drug Delivery. Nanoscale. 2021, 13, 10748–10764. DOI:10.1039/d1nr02065j.
  • Pelaz, B.; Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; Fuente, J. M.; Nienhaus, G. U.; Parak, W. J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano. 2015, 9, 6996–7008. DOI:10.1021/acsnano.5b01326.
  • Gal, N.; Charwat, V.; Städler, B.; Reimhult, E. Poly(Ethylene Glycol) Grafting of Nanoparticles Prevents Uptake by Cells and Transport through Cell Barrier Layers Regardless of Shear Flow and Particle Size ACS Biomater. ACS Biomater. Sci. Eng. 2019, 5, 4355–4365. DOI:10.1021/acsbiomaterials.9b00611.
  • Perera, Y. R.; Xu, J. X.; Amarasekara, D. L.; Hughes, A. C.; Abbood, I.; Fitzkee, N. C. Understanding the Adsorption of Peptides and Proteins onto PEGylated Gold Nanoparticles. Molecules. 2021, 26, 5788. DOI:10.3390/molecules26195788.
  • Wang, Y.; Quinsaat, J. E. Q.; Ono, T.; Maeki, M.; Tokeshi, M.; Isono, T.; Tajima, K.; Satoh, T.; Sato, S.; Miura, Y.; Yamamoto, T. Enhanced Dispersion Stability of Gold Nanoparticles by the Physisorption of Cyclic Poly(Ethylene Glycol). Nat. Commun. 2020, 11, 6089. DOI:10.1038/s41467-020-19947-8.
  • Retout, M.; Blond, P.; Jabin, I.; Bruylants, G. Ultrastable PEGylated Calixarene-Coated Gold Nanoparticles with a Tunable Bioconjugation Density for Biosensing Applications. Bioconjug. Chem. 2021, 32, 290–300. DOI:10.1021/acs.bioconjchem.0c00669.
  • Lundquist, J. J.; Toone, E. J. The Cluster Glycoside Effect. Chem. Rev. 2002, 102, 555–578. DOI:10.1021/cr000418f.
  • Yan, X.; Chai, L.; Fleury, E.; Ganachaud, F.; Bernard, J. ‘Sweet as a Nut’: Production and Use of Nanocapsules Made of Glycopolymer or Polysaccharide Shell. Prog. Polym. Sci. 2021, 120, 101429. DOI:10.1016/j.progpolymsci.2021.101429.
  • Das, R.; Mukhopadhyay, B. A Brief Insight to the Role of Glyconanotechnology in Modern Day Diagnostics and Therapeutics. Carbohydr. Res. 2021, 507, 108394. DOI:10.1016/j.carres.2021.108394.
  • Yilmaz, G.; Becer, C. R. Glyconanoparticles and Their Interactions with Lectins. Polym. Chem. 2015, 6, 5503–5514. DOI:10.1039/C5PY00089K.
  • Dey, A.; Haldar, U.; Rajasekhar, T.; Ghosh, P.; Faust, R.; De, P. Polyisobutylene-Based Glycopolymers as Potent Inhibitors for in Vitro Insulin Aggregation. J. Mater. Chem. B. 2022, 10, 9446–9456. DOI:10.1039/d2tb01856j.
  • Dinc, M.; Esen, C.; Mizaikoff, B. Recent Advances on Core–Shell Magnetic Molecularly Imprinted Polymers for Biomacromolecules. TrAC, Trends Anal. Chem. 2019, 114, 202–217. DOI:10.1016/j.trac.2019.03.008.
  • Xiao, D.; Su, L.; Teng, Y.; Hao, J.; Bi, Y. Fluorescent Nanomaterials Combined with Molecular Imprinting Polymer: Synthesis, Analytical Applications, and Challenges. Mikrochim. Acta. 2020, 187, 399. DOI:10.1007/s00604-020-04353-0.
  • Wang, F.; Wang, D.; Wang, T.; Jin, Y.; Ling, B.; Li, Q.; Li, J. A Simple Approach to Prepare Fluorescent Molecularly Imprinted Nanoparticles. RSC Adv. 2021, 11, 7732–7737. DOI:10.1039/d0ra10618f.
  • Montagna, V.; Haupt, K.; Gonzato, C. RAFT Coupling Chemistry: A General Approach for Post-Functionalizing Molecularly Imprinted Polymers Synthesized by Radical Polymerization. Polym. Chem. 2020, 11, 1055–1061. DOI:10.1039/C9PY01629E.
  • Karg, M.; Jaber, S.; Hellweg, T.; Mulvaney, P. Surface Plasmon Spectroscopy of Gold-Poly-N-Isopropylacrylamide Core-Shell Particles. Langmuir. 2011, 27, 820–827. DOI:10.1021/la1039249.
  • Aioub, M.; El-Sayed, M. A. A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles. J. Am. Chem. Soc. 2016, 138, 1258–1264. DOI:10.1021/jacs.5b10997.
  • Pereira, S. O.; Trindade, T.; Barros-Timmons, A. Polymer@Gold Nanoparticles Prepared via RAFT Polymerization for Opto-Biodetection. Polymers.2018, 10, 189. DOI:10.3390/polym10020189.
  • Tagliazucchi, M.; Blaber, M. G.; Schatz, G. C.; Weiss, E. A.; Szleifer, I. Optical Properties of Responsive Hybrid Au@Polymer Nanoparticles. ACS Nano. 2012, 6, 8397–8406. DOI:10.1021/nn303221y.
  • Chen, N.; Xiang, X.; Tiwari, A.; Heiden, P. A. Tuning Thermoresponsive Behavior of Diblock Copolymers and Their Gold Core Hybrids: Part 1. Importance of Placement of Amphiphilic End Groups on the Diblock Copolymers. J. Colloid Interf. Sci. 2013, 391, 60–69. DOI:10.1016/j.jcis.2012.09.046.
  • Chen, N.; Xiang, X.; Heiden, P. A. Tuning Thermoresponsive Behavior of Diblock Copolymers and Their Gold Core Hybrids. Part 2. How Properties Change Depending on Block Attachment to Gold Nanoparticles. J. Colloid Interf. Sci. 2013, 396, 39–46. DOI:10.1016/j.jcis.2013.01.019.
  • Li, C.; Wang, C.; Ji, Z.; Jiang, N.; Lin, W.; Li, D. Synthesis of Thiol-Terminated Thermoresponsive Polymers and Their Enhancement Effect on Optical Limiting Property of Gold Nanoparticles. Eur. Polym. J. 2019, 113, 404–410. DOI:10.1016/j.eurpolymj.2019.02.009.
  • Liu, J.; Detrembleur, C.; Pauw-Gillet, M.-C.; Mornet, S.; Duguet, E.; Christine Jérôme, C. Gold Nanorods Coated with a Thermo-Responsive Poly(Ethylene Glycol)-b-Poly(N-Vinylcaprolactam) Corona as Drug Delivery Systems for Remotely near Infrared-Triggered Release. Polym. Chem. 2014, 5, 799–813. DOI:10.1039/C3PY01057K.
  • Parida, S.; Maiti, C.; Rajesh, Y.; Dey, K. K.; Pal, I.; Parekh, A.; Patra, R.; Dhara, D.; Dutta, P. K.; Mandal, M. Gold Nanorod Embedded Reduction Responsive Block Copolymer Micelle-Triggered Drug Delivery Combined with Photothermal Ablation for Targeted Cancer Therapy. Biochim. Biophys. Acta. Gen. Subj. 2017, 1861, 3039–3052. DOI:10.1016/j.bbagen.2016.10.004.
  • Márquez-Castro, J. E.; Licea-Claverie, A.; Licea-Rodriguez, J.; Quiroga-Sánchez, L. P.; Méndez, E. R. Surface Grafted Gold Nanorods (GNRDs) Using Thermosensitive Copolymers with Various Transition Temperatures: Nanomaterials with Potential Application for Photothermal Therapy. Eur. Polym. J. 2023, 197, 112341. DOI:10.1016/j.eurpolymj.2023.112341.
  • Rohleder, D.; Vana, P. Near-Infrared-Triggered Photothermal Aggregation of Polymer Grafted Gold Nanorods in a Simulated Blood Fluid. Biomacromolecules. 2021, 22, 1614–1624. DOI:10.1021/acs.biomac.1c00077.
  • Hembury, M.; Beztsinna, N.; Asadi, H.; van den Dikkenberg, J. B.; Meeldijk, J. D.; Hennink, W. E.; Vermonden, T. Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission. Biomacromolecules. 2018, 19, 2841–2848. DOI:10.1021/acs.biomac.8b00414.
  • Hebels, E. R.; Najafi, M.; van den Dikkenberg, J.; Beztsinna, N.; van de, L.; Wilbie, S. D.; Meeldijk, J.; Hembury, M.; Vermonden, T. Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles for Laser Guided Therapy. Eur. Polym. J. 2021, 152, 110467. DOI:10.1016/j.eurpolymj.2021.110467.
  • Aguilar, N. M.; Perez-Aguilar, J. M.; González-Coronel, V. J.; Martínez-Gutiérrez, H.; Zayas Pérez, T.; González-Vergara, E.; Sanchez-Gaytan, B. L.; Soriano-Moro, G. Reversible Thermo-Optical Response Nanocomposites Based on RAFT Symmetric Triblock Copolymers (ABA) of Acrylamide and N-Isopropylacrylamide and Gold Nanoparticles. 2023, Polymers 1963, 15, 1963. DOI:10.3390/polym15081963.
  • Yilmaz, G.; Demir, B.; Timur, S.; Becer, C. R. Poly(Methacrylic Acid)-Coated Gold Nanoparticles: Functional Platforms for Theranostic Applications. Biomacromolecules. 2016, 17, 2901–2911. DOI:10.1021/acs.biomac.6b00706.
  • Hu, S.; Cheng, Q.; Shang, Y.; Wang, Z.; Zhu, R.; Zhang, L.; Wu, W.; Zhang, S.; Li, J. Synthesis of pH-Responsive Polyzwitterions for Activated Cellular Uptake and Tumor Accumulation of Gold Nanoparticles at Tumorous Acidity. Biomed. Mater. 2023, 18, 025003. DOI:10.1088/1748-605X/acb394.
  • Mazloomi-Rezvani, M.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. “Grafting to” Approach for Surface Modification of AuNPs with RAFT-Mediated Synthesized Smart Polymers: Stimuli-Responsive Behaviors of Hybrid Nanoparticles. J. Phys. Chem. Solids. 2018, 123, 183–190. DOI:10.1016/j.jpcs.2018.08.002.
  • Liu, L.; Rui, L.; Gao, Y.; Zhang, W. Self-Assembly and Disassembly of a Redox-Responsive Ferrocene-Containing Amphiphilic Block Copolymer for Controlled Release. Polym. Chem. 2015, 6, 1817–1829. DOI:10.1039/C4PY01289E.
  • Xu, F.; Li, H.; Luo, Y. L.; Tang, W. Redox-Responsive Self-Assembly Micelles from Poly(N-Acryloylmorpholine-Block-2-Acryloyloxyethyl Ferrocenecarboxylate) Amphiphilic Block Copolymers as Drug Release Carriers. ACS Appl. Mater. Interf. 2017, 9, 5181–5192. DOI:10.1021/acsami.6b16017.
  • Gao, C.; Liu, C.; Zhou, H.; Wang, S.; Zhang, W. In Situ Synthesis of Nano-Assemblies of the High Molecular Weight Ferrocene-Containing Block Copolymer via Dispersion RAFT Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 900–909. DOI:10.1002/pola.27947.
  • Zhang, J.-G.; Zhang, X.-Y.; Yu, H.; Luo, Y.-L.; Xu, F.; Chen, Y.-S. Preparation, Self-Assembly and Performance Modulation of Gold Nanoparticles Decorated Ferrocene-Containing Hybrid Block Copolymer Multifunctional Materials. J. Ind. Eng. Chem. 2018, 65, 224–235. DOI:10.1016/j.jiec.2018.04.033.
  • Wu, Y.; Yang, H.; Lin, Y.; Zheng, Z.; Ding, X. Poly(N-Isopropylacrylamide) Modified Fe3O4@Au Nanoparticles with Magnetic and Temperature Responsive Properties. Mater. Lett. 2016, 169, 218–222. DOI:10.1016/j.matlet.2016.01.127.
  • Mojtaba, A.; Judi, M.; Mahmoodzadeh, F.; Jaymand, M. Synthesis and Characterization of a pH- and Glucose-Responsive Triblock Copolymer via RAFT Technique and Its Conjugation with Gold Nanoparticles for Biomedical Applications. Polym. Adv. Techs. 2018, 29, 3097–3105. DOI:10.1002/pat.4430.
  • Lemich, S. B.; Sobania, N.; Meyer, N.-F.; Schütz, P.; Hankiewicz, B.; Abetz, V. Synthesis of Multiresponsive Gold@Polymer-Nanohybrid Materials Using Polymer Precursors Obtained by Photoiniferter RAFT Polymerization. Macromol. Chem. Phys. 2023, 224, 220035.
  • Feng, W.; Lv, W.; Qi, J.; Zhang, G.; Zhang, F.; Fan, X. Quadruple-Responsive Nanocomposite Based on Dextran–PMAA–PNIPAM, Iron Oxide Nanoparticles and Gold Nanorods. Macromol. Rapid Commun. 2012, 33, 133–139. DOI:10.1002/marc.201100595.
  • Nguyen, D.; Such, C. H.; Hawkett, B. S. Polymer Coating of Carboxylic Acid Functionalized Multiwalled Carbon Nanotubes via Reversible Addition Fragmentation Chain Transfer Mediated Emulsion Polymerization. J. Polym. Sci. A Polym. Chem. 2013, 51, 250–257. DOI:10.1002/pola.26389.
  • Zhang, C.; Li, J.; Cui, N.; Yan, X.; Xie, Z.; Qi, D. Polymer/C.I. Pigment Red 170 Hybrid Latexes Prepared by RAFT-Mediated Surfactant-Free Emulsion Polymerization. Colloids Surf, A 2021, 629, 127409. DOI:10.1016/j.colsurfa.2021.127409.
  • Devaraj, N. K.; Finn, M. G. Introduction: Click Chemistry. Chem. Rev. 2021, 121, 6697–6698. DOI:10.1021/acs.chemrev.1c00469.
  • Golas, P. L.; Matyjaszewski, K. Marrying Click Chemistry with Polymerization: Expanding the Scope of Polymeric Materials. Chem. Soc. Rev. 2010, 39, 1338–1354. DOI:10.1039/b901978m.
  • Zhang, T.; Wu, Y.; Pan, X.; Zheng, Z.; Ding, X.; Peng, Y. An Approach for the Surface Functionalized Gold Nanoparticles with pH-Responsive Polymer by Combination of RAFT and Click Chemistry. Eur. Polym. J. 2009, 45, 1625–1633. DOI:10.1016/j.eurpolymj.2009.03.016.
  • Zhang, T.; Zheng, Z.; Ding, X.; Peng, Y. Smart Surface of Gold Nanoparticles Fabricated by Combination of RAFT and Click Chemistry. Macromol. Rapid Commun. 2008, 29, 1716–1720. DOI:10.1002/marc.200800385.
  • Pereira, S. O.; Trindade, T.; Barros-Timmons, A. Biofunctional Polymer Coated Au Nanoparticles Prepared via RAFT-Assisted Encapsulating Emulsion Polymerization and Click Chemistry. Polymers (Basel). 2020, 12, 1442–1460. DOI:10.3390/polym12071442.
  • Jain, A.; Cheng, K. The Principles and Applications of Avidin Based Nanoparticles in Drug Delivery and Diagnosis. J. Control. Release. 2017, 245, 27–40. DOI:10.1016/j.jconrel.2016.11.016.
  • Lyu, Y.; Martínez, Á.; D’Incà, F.; Mancin, F.; Scrimin, P. Biotin–Avidin Interaction in Biotinylated Gold Nanoparticles and the Modulation of Their Aggregation. Nanomaterials. 2021, 11, 1559. DOI:10.3390/nano11061559.
  • Wang, S.; Hossain, M. Z.; Han, T.; Shinozuka, K.; Suzuki, T.; Kuwana, A.; Kobayashi, H. Avidin–Biotin Technology in Gold Nanoparticle-Decorated Graphene Field Effect Transistors for Detection of Biotinylated Macromolecules with Ultrahigh Sensitivity and Specificity. ACS Omega. 2020, 5, 30037–30046. DOI:10.1021/acsomega.0c04429.
  • Pereira, S. O.; Trindade, T.; Barros-Timmons, A. Impact of Critical Micelle Concentration of macro-RAFT Agents on the Encapsulation of Colloidal Au Nanoparticles. J. Colloid Interf. Sci. 2019, 545, 251–258. DOI:10.1016/j.jcis.2019.03.034.
  • Zengin, A.; Caykara, T. RAFT-Mediated Synthesis of Poly[(Oligoethylene Glycol) Methyl Ether Acrylate] Brushes for Biological Functions. J. Polym. Sci. A Polym. Chem. 2012, 50, 4443–4450.,. DOI:10.1002/pola.26250.
  • Zhao, L.; Zhao, F.; Zeng, B. Synthesis of Water-Compatible Surface-Imprinted Polymer via Click Chemistry and RAFT Precipitation Polymerization for Highly Selective and Sensitive Electrochemical Assay of Fenitrothion. Biosens. Bioelectron. 2014, 62, 19–24. DOI:10.1016/j.bios.2014.06.022.
  • Schiller, T. L.; Keddie, D. J.; Blakey, I.; Fredericks, P. M. Surface-Enhanced Raman Encoded Polymer Stabilized Gold Nanoparticles: Demonstration of Potential for Use in Bioassays. Eur. Polym. J. 2017, 87, 508–518. DOI:10.1016/j.eurpolymj.2016.08.032.
  • Takara, M.; Toyoshima, M.; Seto, H.; Hoshino, Y.; Miura, Y. Polymer-Modified Gold Nanoparticles via RAFT Polymerization: A Detailed Study for Biosensing Application. Polym. Chem. 2014, 5, 931–939. DOI:10.1039/C3PY01001E.
  • Álvarez-Paino, M.; Bordegé, V.; Cuervo-Rodríguez, R.; Muñoz-Bonilla, A.; Fernández-García, M. Well-Defined Glycopolymers via RAFT Polymerization: Stabilization of Gold Nanoparticles. Macromol. Chem. Phys. 2014, 215, 1915–1924. DOI:10.1002/macp.201400306.
  • Shen, F.-W.; Zhou, K.-C.; Cai, H.; Zhang, Y. N.; Zheng, Y. L.; Quan, J. One-Pot Synthesis of Thermosensitive Glycopolymers Grafted Gold Nanoparticles and Their Lectin Recognition. Colloids Surf. B Biointerf. 2019, 173, 504–511. DOI:10.1016/j.colsurfb.2018.10.028.
  • Wilkins, L. E.; Phillips, D. J.; Deller, R. C.; Davies, G.-L.; Gibson, M. I. Synthesis and Characterisation of Glucose-Functional Glycopolymers and Gold Nanoparticles: Study of Their Potential Interactions with Ovine Red Blood Cells. Carbohydr. Res. 2015, 405, 47–54. DOI:10.1016/j.carres.2014.09.009.
  • Richards, S.-J.; Baker, A. N.; Walker, M.; Gibson, M. Polymer-Stabilized Sialylated Nanoparticles: Synthesis, Optimization, and Differential Binding to Influenza Hemagglutinins. Biomacromolecules. 2020, 21, 1604–1612. DOI:10.1021/acs.biomac.0c00179.
  • Ahmad, A.; Georgiou, P. G.; Pancaro, A.; Hasan, M.; Nelissen, I.; Gibson, M. I. Polymer-Tethered Glycosylated Gold Nanoparticles Recruit Sialylated Glycoproteins into Their Protein Corona, Leading to Off-Target Lectin Binding. Nanoscale. 2022, 14, 13261–13273. DOI:10.1039/d2nr01818g.
  • Zhang, Z.; Schepens, B.; Nuhn, L.; Saelens, X.; Schotsaert, M.; Callewaert, N.; De Rycke, R.; Zhang, Q.; Moins, S.; Benali, S.; et al. Influenza-Binding Sialylated Polymer Coated Gold Nanoparticles Prepared via RAFT Polymerization and Reductive Amination. Chem. Commun. (Camb). 2016, 52, 3352–3355. DOI:10.1039/c6cc00501b.
  • Shi, X.; Zhang, W.; Zhang, H. Biological Sample-Compatible Au Nanoparticle-Containing Fluorescent Molecularly Imprinted Polymer Microspheres by Combining RAFT Polymerization and Au–Thiol Chemistry. J. Mater. Chem. B. 2022, 10, 6673–6681. DOI:10.1039/d2tb00179a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.