153
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A review on the culmination of rational development of stimuli-responsive polymeric micelles as vehicles for site-specific hydrophobic therapeutics

, , , , &
Pages 349-375 | Received 02 Feb 2024, Accepted 21 Mar 2024, Published online: 13 Apr 2024

References

  • Langer, R. Drugs on Target. Science 2001, 293, 58–59. DOI: 10.1126/science.1063273.
  • Duncan, R. The Dawning Era of Polymer Therapeutics. Nat. Rev. Drug Discov. 2003, 2, 347–360. DOI: 10.1038/nrd1088.
  • Salem, A. K.; Searson, P. C.; Leong, K. W. Multifunctional Nanorods for Gene Delivery. Nat. Mater. 2003, 2, 668–671. DOI: 10.1038/nmat974.
  • Allen, C.; Maysinger, D.; Eisenberg, A. Nano-Engineering Block Copolymer Aggregates for Drug Delivery. Colloids Surf, B 1999, 16, 3–27. DOI: 10.1016/S0927-7765(99)00058-2.
  • Ghosh, B.; Biswas, S. Polymeric Micelles in Cancer Therapy: State of the Art. J. Control. Release 2021, 332, 127–147. DOI: 10.1016/j.jconrel.2021.02.016.
  • Majumder, N.; G Das, N.; Das, S. K. Polymeric Micelles for Anticancer Drug Delivery. Ther. Deliv. 2020, 11, 613–635. DOI: 10.4155/tde-2020-0008.
  • Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Control. Release 2021, 332, 312–336. DOI: 10.1016/j.jconrel.2021.02.031.
  • Guzmán Rodríguez, A.; Sablón Carrazana, M.; Rodríguez Tanty, C.; Malessy, M. J. A.; Fuentes, G.; Cruz, L. J. Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers. (Basel) 2022, 15, 4. DOI: 10.3390/cancers15010004.
  • Kotta, S.; Aldawsari, H. M.; Badr-Eldin, S. M.; Nair, A. B.; Yt, K. Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics 2022, 14, 1636. DOI: 10.3390/pharmaceutics14081636.
  • Pratten, M. K.; et al. Micelle‐Forming Block Copolymers: Pinocytosis by Macrophages and Interaction with Model Membranes. Die Makromolekulare Chemie: Macromol. Chem. Phys., 1985. 186(4): p. 725–733
  • Gros, L.; Ringsdorf, H.; Schupp, H. Polymeric Antitumor Agents on a Molecular and on a Cellular Level? Angew. Chem. Int. Ed. Engl. 1981, 20, 305–325. DOI: 10.1002/anie.198103051.
  • Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Delivery Rev. 2012, 64, 37–48. DOI: 10.1016/j.addr.2012.09.013.
  • Batrakova, E. V.; et al. Polymer Micelles as Drug Carriers, in Nanoparticulates as Drug Carriers. 2006, World Scientific. p. 57–93. DOI: 10.1142/9781860949074_0005.
  • Forrest, M. L.; Won, C.-Y.; Malick, A. W.; Kwon, G. S. In Vitro Release of the mTOR Inhibitor Rapamycin from Poly (Ethylene Glycol)-b-Poly (ε-Caprolactone) Micelles. J. Control. Release 2006, 110, 370–377. DOI: 10.1016/j.jconrel.2005.10.008.
  • Vakil, R.; Kwon, G. S. Poly (Ethylene Glycol)-b-Poly (ε-Caprolactone) and PEG-Phospholipid Form Stable Mixed Micelles in Aqueous Media. Langmuir 2006, 22, 9723–9729. DOI: 10.1021/la061408y.
  • Torchilin, V. P.; Lukyanov, A. N.; Gao, Z.; Papahadjopoulos-Sternberg, B. Immunomicelles: Targeted Pharmaceutical Carriers for Poorly Soluble Drugs. Proc. Natl. Acad. Sci. U S A 2003, 100, 6039–6044. DOI: 10.1073/pnas.0931428100.
  • Torchilin, V. P. Structure and Design of Polymeric Surfactant-Based Drug Delivery Systems. J. Control. Release 2001, 73, 137–172. DOI: 10.1016/s0168-3659(01)00299-1.
  • Le Garrec, D.; Gori, S.; Luo, L.; Lessard, D.; Smith, D. C.; Yessine, M.-A.; Ranger, M.; Leroux, J.-C. Poly (N-Vinylpyrrolidone)-Block-Poly (D, L-Lactide) as a New Polymeric Solubilizer for Hydrophobic Anticancer Drugs: In Vitro and in Vivo Evaluation. J. Control. Release 2004, 99, 83–101. DOI: 10.1016/j.jconrel.2004.06.018.
  • Gaucher, G.; Dufresne, M.-H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J.-C. Block Copolymer Micelles: preparation, Characterization and Application in Drug Delivery. J. Control. Release 2005, 109, 169–188. DOI: 10.1016/j.jconrel.2005.09.034.
  • Gao, Z.-G.; Fain, H. D.; Rapoport, N. Controlled and Targeted Tumor Chemotherapy by Micellar-Encapsulated Drug and Ultrasound. J. Control. Release 2005, 102, 203–222. DOI: 10.1016/j.jconrel.2004.09.021.
  • Wu, P.; Jia, Y.; Qu, F.; Sun, Y.; Wang, P.; Zhang, K.; Xu, C.; Liu, Q.; Wang, X. Ultrasound-Responsive Polymeric Micelles for Sonoporation-Assisted Site-Specific Therapeutic Action. ACS Appl. Mater. Interfaces. 2017, 9, 25706–25716. DOI: 10.1021/acsami.7b05469.
  • Howard, B.; Gao, Z.; Lee, S.-W.; Seo, M.-H.; Rapoport, N. Ultrasound-Enhanced Chemotherapy of Drug-Resistant Breast Cancer Tumors by Micellar-Encapsulated Paclitaxel. Am. J. Drug Deliv. 2006, 4, 97–104. DOI: 10.2165/00137696-200604020-00005.
  • Husseini, G. A.; Myrup, G. D.; Pitt, W. G.; Christensen, D. A.; Rapoport, N. Y. Factors Affecting Acoustically Triggered Release of Drugs from Polymeric Micelles. J. Control. Release 2000, 69, 43–52. DOI: 10.1016/s0168-3659(00)00278-9.
  • Rapoport, N. Y.; Christensen, D. A.; Fain, H. D.; Barrows, L.; Gao, Z. Ultrasound-Triggered Drug Targeting of Tumors in Vitro and in Vivo. Ultrasonics 2004, 42, 943–950. DOI: 10.1016/j.ultras.2004.01.087.
  • Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic Block Copolymers for Drug Delivery. J. Pharm. Sci. 2003, 92, 1343–1355. DOI: 10.1002/jps.10397.
  • Zhang, L.; Yu, K.; Eisenberg, A. Ion-Induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymers. Science 1996, 272, 1777–1779. DOI: 10.1126/science.272.5269.1777.
  • Kuperkar, K.; Patel, D.; Atanase, L. I.; Bahadur, P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers. (Basel) 2022, 14, 4702. DOI: 10.3390/polym14214702.
  • Qaiser, A.; Kiani, M. H.; Parveen, R.; Sarfraz, M.; Shahnaz, G.; Rahdar, A.; Taboada, P. Design and Synthesis of Multifunctional Polymeric Micelles for Targeted Delivery in Helicobacter pylori Infection. J. Mol. Liq. 2022, 363, 119802. DOI: 10.1016/j.molliq.2022.119802.
  • Rahdar, A.; Hasanein, P.; Bilal, M.; Beyzaei, H.; Kyzas, G. Z. Quercetin-Loaded F127 Nanomicelles: Antioxidant Activity and Protection against Renal Injury Induced by Gentamicin in Rats. Life Sci. 2021, 276, 119420. DOI: 10.1016/j.lfs.2021.119420.
  • Shuai, X.; Merdan, T.; Schaper, A. K.; Xi, F.; Kissel, T. Core-Cross-Linked Polymeric Micelles as Paclitaxel Carriers. Bioconjug. Chem. 2004, 15, 441–448. DOI: 10.1021/bc034113u.
  • Bae, K. H.; Choi, S. H.; Park, S. Y.; Lee, Y.; Park, T. G. Thermosensitive Pluronic Micelles Stabilized by Shell Cross-Linking with Gold Nanoparticles. Langmuir 2006, 22, 6380–6384. DOI: 10.1021/la0606704.
  • Kang, N.; Perron, M.-E.; Prud’homme, R. E.; Zhang, Y.; Gaucher, G.; Leroux, J.-C. Stereocomplex Block Copolymer Micelles: Core − Shell Nanostructures with Enhanced Stability. Nano Lett. 2005, 5, 315–319. DOI: 10.1021/nl048037v.
  • Lavasanifar, A.; Samuel, J.; Kwon, G. S. Micelles Self-Assembled from Poly (Ethylene Oxide)-Block-Poly (N-Hexyl Stearate L-Aspartamide) by a Solvent Evaporation Method: Effect on the Solubilization and Haemolytic Activity of Amphotericin B. J. Control. Release 2001, 77, 155–160. DOI: 10.1016/s0168-3659(01)00477-1.
  • Razzaq, S.; Rauf, A.; Raza, A.; Akhtar, S.; Tabish, T. A.; Sandhu, M. A.; Zaman, M.; Ibrahim, I. M.; Shahnaz, G.; Rahdar, A.; et al. A Multifunctional Polymeric Micelle for Targeted Delivery of Paclitaxel by the Inhibition of the P-Glycoprotein Transporters. Nanomaterials 2021, 11, 2858. DOI: 10.3390/nano11112858.
  • Patel, H. S.; Shaikh, S. J.; Ray, D.; Aswal, V. K.; Vaidya, F.; Pathak, C.; Varade, D.; Rahdar, A.; Sharma, R. K. Structural Transitions in Mixed Phosphatidylcholine/Pluronic Micellar Systems and Their in Vitro Therapeutic Evaluation for Poorly Water-Soluble Drug. J. Mol. Liq. 2022, 364, 120003. DOI: 10.1016/j.molliq.2022.120003.
  • Jirofti, N.; Poorsargol, M.; Sarhaddi, F.; Jahani, A.; Kadkhoda, J.; Kalalinia, F.; Rahdar, A.; Cambón, A.; Taboada, P. Polymer Stabilized, Phenytoin-Loaded Nanomicelles as Promising Nanocarriers: In Silico and in Vitro Evaluations. Eur. Polym. J. 2023, 196, 112228. DOI: 10.1016/j.eurpolymj.2023.112228.
  • Kiani, M. H.; Ul Hassan, M. R.; Hussain, S.; Kiani, Z. H.; Ibrahim, I. M.; Shahnaz, G.; Rahdar, A.; Díez-Pascual, A. M. Cholesterol Decorated Thiolated Stereocomplexed Nanomicelles for Improved anti-Mycobacterial Potential via Efflux Pump and Mycothione Reductase Inhibition. J. Mol. Liq. 2022, 367, 120378. DOI: 10.1016/j.molliq.2022.120378.
  • Miyata, K.; et al. Practically Applicable Cross-Linked Polyplex Micelle with High Tolerability against Freeze-Drying for in Vivo Gene Delivery. J Control Release 2005, 109, 14–23.
  • Oishi, M.; Nagasaki, Y.; Itaka, K.; Nishiyama, N.; Kataoka, K. Lactosylated Poly (Ethylene Glycol)-siRNA Conjugate through Acid-Labile β-Thiopropionate Linkage to Construct pH-Sensitive Polyion Complex Micelles Achieving Enhanced Gene Silencing in Hepatoma Cells. J. Am. Chem. Soc. 2005, 127, 1624–1625. DOI: 10.1021/ja044941d.
  • Katayama, Y.; Sonoda, T.; Maeda, M. A Polymer Micelle Responding to the Protein Kinase a Signal. Macromolecules 2001, 34, 8569–8573. DOI: 10.1021/ma010966a.
  • Zhou, Q.; Zhang, L.; Yang, T.; Wu, H. Stimuli-Responsive Polymeric Micelles for Drug Delivery and Cancer Therapy. Int. J. Nanomedicine. 2018, 13, 2921–2942. DOI: 10.2147/IJN.S158696.
  • Yang, H.; Khan, A. R.; Liu, M.; Fu, M.; Ji, J.; Chi, L.; Zhai, G. Stimuli-Responsive Polymeric Micelles for the Delivery of Paclitaxel. J. Drug Delivery Sci. Technol. 2020, 56, 101523. DOI: 10.1016/j.jddst.2020.101523.
  • Rapoport, N. Physical Stimuli-Responsive Polymeric Micelles for anti-Cancer Drug Delivery. Prog. Polym. Sci. 2007, 32, 962–990. DOI: 10.1016/j.progpolymsci.2007.05.009.
  • Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-Responsive Polymeric Nanocarriers for the Controlled Transport of Active Compounds: Concepts and Applications. Adv. Drug Deliv. Rev. 2012, 64, 866–884. DOI: 10.1016/j.addr.2012.01.020.
  • Biswas, S.; Kumari, P.; Lakhani, P. M.; Ghosh, B. Recent Advances in Polymeric Micelles for anti-Cancer Drug Delivery. Eur. J. Pharm. Sci. 2016, 83, 184–202. DOI: 10.1016/j.ejps.2015.12.031.
  • Perumal, S.; Atchudan, R.; Lee, W. A Review of Polymeric Micelles and Their Applications. Polymers. (Basel) 2022, 14, 2510. DOI: 10.3390/polym14122510.
  • Riess, G. Micellization of Block Copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. DOI: 10.1016/S0079-6700(03)00015-7.
  • Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Multicompartment Micelles from ABC Miktoarm Stars in Water. Science 2004, 306, 98–101. DOI: 10.1126/science.1103350.
  • Marras, A. E.; Ting, J. M.; Stevens, K. C.; Tirrell, M. V. Advances in the Structural Design of Polyelectrolyte Complex Micelles. J. Phys. Chem. B 2021, 125, 7076–7089. DOI: 10.1021/acs.jpcb.1c01258.
  • Dewald, I.; Fery, A. Polymeric Micelles and Vesicles in Polyelectrolyte Multilayers: Introducing Hierarchy and Compartmentalization. Adv. Materials Inter. 2017, 4, 1600317. DOI: 10.1002/admi.201600317.
  • Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A Review on Phospholipids and Their Main Applications in Drug Delivery Systems. Asian J. Pharm. Sci. 2015, 10, 81–98. DOI: 10.1016/j.ajps.2014.09.004.
  • Penttila, P. A.; Vierros, S.; Utriainen, K.; Carl, N.; Rautkari, L.; Sammalkorpi, M.; O Sterberg, M. Phospholipid-Based Reverse Micelle Structures in Vegetable Oil Modified by Water Content, Free Fatty Acid, and Temperature. Langmuir 2019, 35, 8373–8382. DOI: 10.1021/acs.langmuir.9b01135.
  • Smith, A. E.; Xu, X.; McCormick, C. L. Stimuli-Responsive Amphiphilic (co) Polymers via RAFT Polymerization. Prog. Polym. Sci. 2010, 35, 45–93. DOI: 10.1016/j.progpolymsci.2009.11.005.
  • Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process–a Second Update. Aust. J. Chem. 2009, 62, 1402–1472. DOI: 10.1071/CH09311.
  • Matyjaszewski, K.; Davis, T. P. Handbook of radical polymerization. 2002.
  • Hu, J.; Liu, S. Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments. Macromolecules 2010, 43, 8315–8330. DOI: 10.1021/ma1005815.
  • Wang, D.; Miyamoto, R.; Shiraishi, Y.; Hirai, T. BODIPY-Conjugated Thermoresponsive Copolymer as a Fluorescent Thermometer Based on Polymer Microviscosity. Langmuir 2009, 25, 13176–13182. DOI: 10.1021/la901860x.
  • Yan, Q.; Yuan, J.; Yuan, W.; Zhou, M.; Yin, Y.; Pan, C. Copolymer Logical Switches Adjusted through Core–Shell Micelles: From Temperature Response to Fluorescence Response. Chem. Commun. (Camb.) 2008, 46, 6188–6190. DOI: 10.1039/b814064b.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper (I)‐Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. 2002, 114, 2708–2711. DOI: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0.
  • Sumerlin, B. S.; Vogt, A. P. Macromolecular Engineering through Click Chemistry and Other Efficient Transformations. Macromolecules 2010, 43, 1–13. DOI: 10.1021/ma901447e.
  • Cunningham, M. F. Living/Controlled Radical Polymerizations in Dispersed Phase Systems. Prog. Polym. Sci. 2002, 27, 1039–1067. DOI: 10.1016/S0079-6700(02)00008-4.
  • Braunecker, W. A.; Matyjaszewski, K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Prog. Polym. Sci. 2007, 32, 93–146. DOI: 10.1016/j.progpolymsci.2006.11.002.
  • Lowe, A. B.; McCormick, C. L. Reversible Addition–Fragmentation Chain Transfer (RAFT) Radical Polymerization and the Synthesis of Water-Soluble (co) Polymers under Homogeneous Conditions in Organic and Aqueous Media. Prog. Polym. Sci. 2007, 32, 283–351. DOI: 10.1016/j.progpolymsci.2006.11.003.
  • Hawker, C. J.; Bosman, A. W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev. 2001, 101, 3661–3688. DOI: 10.1021/cr990119u.
  • Ouchi, M.; Terashima, T.; Sawamoto, M. Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis. Chem. Rev. 2009, 109, 4963–5050. DOI: 10.1021/cr900234b.
  • Chiefari, J.; Chong, Y. K. (.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; et al. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559–5562. DOI: 10.1021/ma9804951.
  • Pietsch, C.; Schubert, U. S.; Hoogenboom, R. Aqueous Polymeric Sensors Based on Temperature-Induced Polymer Phase Transitions and Solvatochromic Dyes. Chem. Commun. (Camb.) 2011, 47, 8750–8765. DOI: 10.1039/c1cc11940k.
  • Braga, C. B.; Pilli, R. A.; Ornelas, C.; Weck, M. Near-Infrared Fluorescent Micelles from Poly (Norbornene) Brush Triblock Copolymers for Nanotheranostics. Biomacromolecules 2021, 22, 5290–5306. DOI: 10.1021/acs.biomac.1c01196.
  • Dai, S.; Ravi, P.; Tam, K. C. Thermo-and Photo-Responsive Polymeric Systems. Soft Matter 2009, 5, 2513–2533. DOI: 10.1039/b820044k.
  • Dai, S.; Ravi, P.; Tam, K. C. pH-Responsive Polymers: Synthesis, Properties and Applications. Soft Matter. 2008, 4, 435–449. DOI: 10.1039/b714741d.
  • Roy, D.; Cambre, J. N.; Sumerlin, B. S. Future Perspectives and Recent Advances in Stimuli-Responsive Materials. Prog. Polym. Sci. 2010, 35, 278–301. DOI: 10.1016/j.progpolymsci.2009.10.008.
  • Zhou, Y.; Jiang, K.; Song, Q.; Liu, S. Thermo-Induced Formation of Unimolecular and Multimolecular Micelles from Novel Double Hydrophilic Multiblock Copolymers of N, N-Dimethylacrylamide and N-Isopropylacrylamide. Langmuir 2007, 23, 13076–13084. DOI: 10.1021/la702548h.
  • Ge, Z.; Hu, J.; Huang, F.; Liu, S. Responsive Supramolecular Gels Constructed by Crown Ether Based Molecular Recognition. Angewandte Chemie 2009, 121, 1830–1834. DOI: 10.1002/ange.200805712.
  • Li, C.; Liu, S. Polymeric Assemblies and Nanoparticles with Stimuli-Responsive Fluorescence Emission Characteristics. Chem. Commun. (Camb.) 2012, 48, 3262–3278. DOI: 10.1039/c2cc17695e.
  • Nakayama, M.; Akimoto, J.; Okano, T. Polymeric Micelles with Stimuli-Triggering Systems for Advanced Cancer Drug Targeting. J. Drug Target. 2014, 22, 584–599. DOI: 10.3109/1061186X.2014.936872.
  • Gao, G. H.; Li, Y.; Lee, D. S. Environmental pH-Sensitive Polymeric Micelles for Cancer Diagnosis and Targeted Therapy. J. Control. Release 2013, 169, 180–184. DOI: 10.1016/j.jconrel.2012.11.012.
  • Sutton, D.; Nasongkla, N.; Blanco, E.; Gao, J. Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharm. Res. 2007, 24, 1029–1046. DOI: 10.1007/s11095-006-9223-y.
  • Hoang, B.; Ekdawi, S. N.; Reilly, R. M.; Allen, C. Active Targeting of Block Copolymer Micelles with Trastuzumab Fab Fragments and Nuclear Localization Signal Leads to Increased Tumor Uptake and Nuclear Localization in HER2-Overexpressing Xenografts. Mol. Pharm. 2013, 10, 4229–4241. DOI: 10.1021/mp400315p.
  • Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules 2014, 15, 1955–1969. DOI: 10.1021/bm5003009.
  • Cheng, H.; Wang, L.; Mollica, M.; Re, A. T.; Wu, S.; Zuo, L. Nitric Oxide in Cancer Metastasis. Cancer Lett. 2014, 353, 1–7. DOI: 10.1016/j.canlet.2014.07.014.
  • Wang, G.; Sun, J.; Liu, G.; Fu, Y.; Zhang, X. Bradykinin Promotes Cell Proliferation, Migration, Invasion, and Tumor Growth of Gastric Cancer through ERK Signaling Pathway. J. Cell. Biochem. 2017, 118, 4444–4453. DOI: 10.1002/jcb.26100.
  • Shay, G.; Lynch, C. C.; Fingleton, B. Moving Targets: Emerging Roles for MMPs in Cancer Progression and Metastasis. Matrix Biol. 2015, 44–46, 200–206. DOI: 10.1016/j.matbio.2015.01.019.
  • Frezzetti, D.; Gallo, M.; Roma, C.; D'Alessio, A.; Maiello, M. R.; Bevilacqua, S.; Normanno, N.; De Luca, A. Vascular Endothelial Growth Factor a Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells. J. Cell. Physiol. 2016, 231, 1514–1521. DOI: 10.1002/jcp.25243.
  • Gajbhiye, K. R.; Gajbhiye, J. EPR Effect Based Nanocarriers Targeting for Treatment of Cancer. Int. J. Drug Deliv. 2017, 8, 117–124.
  • Mozhi, A.; Ahmad, I.; Okeke, C. I.; Li, C.; Liang, X.-J. pH-Sensitive Polymeric Micelles for the Co-Delivery of Proapoptotic Peptide and Anticancer Drug for Synergistic Cancer Therapy. RSC Adv. 2017, 7, 12886–12896. DOI: 10.1039/C6RA27054A.
  • Fluksman, A.; Benny, O. A Robust Method for Critical Micelle Concentration Determination Using Coumarin-6 as a Fluorescent Probe. Anal. Methods 2019, 11, 3810–3818. DOI: 10.1039/C9AY00577C.
  • Hamley, I. W. Block Copolymers in Solution: Fundamentals and Applications. 2005. John Wiley & Sons. p. 1–65. DOI: 10.1002/9780470016985.
  • Trujillo, M.; Schramm, M. P. Measuring Critical Micelle Concentration as a Function of Cavitand Additives Using Surface Tension and Dye Micellization. Ronald E McNair Postbac. Achiev. Program. 2010, 14, 155–168.
  • Owen, S. C.; Chan, D. P.; Shoichet, M. S. Polymeric Micelle Stability. Nano Today 2012, 7, 53–65. DOI: 10.1016/j.nantod.2012.01.002.
  • Devi, S.; Saini, V.; Kumar, M.; Bhatt, S.; Gupta, S.; Deep, A. A Novel Approach of Drug Localization through Development of Polymeric Micellar System Containing Azelastine HCl for Ocular Delivery. Pharm. Nanotechnol. 2019, 7, 314–327. DOI: 10.2174/2211738507666190726162000.
  • Trimaille, T.; Mondon, K.; Gurny, R.; Möller, M. Novel Polymeric Micelles for Hydrophobic Drug Delivery Based on Biodegradable Poly (Hexyl-Substituted Lactides). Int. J. Pharm. 2006, 319, 147–154. DOI: 10.1016/j.ijpharm.2006.03.036.
  • Ray, G. B.; Chakraborty, I.; Moulik, S. P. Pyrene Absorption Can Be a Convenient Method for Probing Critical Micellar Concentration (Cmc) and Indexing Micellar Polarity. J. Colloid Interface Sci. 2006, 294, 248–254. DOI: 10.1016/j.jcis.2005.07.006.
  • Scholz, N.; Behnke, T.; Resch-Genger, U. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension—A Method Comparison. J. Fluoresc. 2018, 28, 465–476. DOI: 10.1007/s10895-018-2209-4.
  • Van Domeselaar, G. H.; Kwon, G. S.; Andrew, L. C.; Wishart, D. S. Application of Solid Phase Peptide Synthesis to Engineering PEO–Peptide Block Copolymers for Drug Delivery. Colloids Surf, B 2003, 30, 323–334. DOI: 10.1016/S0927-7765(03)00125-5.
  • Azam, M. R.; Tan, I. M.; Ismail, L.; Mushtaq, M.; Nadeem, M.; Sagir, M. Static Adsorption of Anionic Surfactant onto Crushed Berea Sandstone. J. Petrol. Explor. Prod. Technol. 2013, 3, 195–201. DOI: 10.1007/s13202-013-0057-y.
  • Bakkour, Y.; Darcos, V.; Li, S.; Coudane, J. Diffusion Ordered Spectroscopy (DOSY) as a Powerful Tool for Amphiphilic Block Copolymer Characterization and for Critical Micelle Concentration (CMC) Determination. Polym. Chem. 2012, 3, 2006–2010. DOI: 10.1039/c2py20054f.
  • Moretton, M. A.; Glisoni, R. J.; Chiappetta, D. A.; Sosnik, A. Molecular Implications in the Nanoencapsulation of the Anti-Tuberculosis Drug Rifampicin within Flower-like Polymeric Micelles. Colloids Surf. B Biointerfaces 2010, 79, 467–479. DOI: 10.1016/j.colsurfb.2010.05.016.
  • Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. DOI: 10.4314/tjpr.v12i2.20.
  • Zhu, Y.; Meng, T.; Tan, Y.; Yang, X.; Liu, Y.; Liu, X.; Yu, F.; Wen, L.; Dai, S.; Yuan, H.; et al. Negative Surface Shielded Polymeric Micelles with Colloidal Stability for Intracellular Endosomal/Lysosomal Escape. Mol. Pharm. 2018, 15, 5374–5386. DOI: 10.1021/acs.molpharmaceut.8b00842.
  • Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. DOI: 10.1016/j.jconrel.2016.06.017.
  • Hansma, H. G.; Bezanilla, M.; Zenhausern, F.; Adrian, M.; Sinsheimer, R. L. Atomic Force Microscopy of DNA in Aqueous Solutions. Nucleic Acids Res. 1993, 21, 505–512. DOI: 10.1093/nar/21.3.505.
  • Manjili, H. K.; et al. Pharmacokinetics and in Vivo Delivery of Curcumin by Copolymeric mPEG-PCL Micelles. Eur. J. Pharm. Biopharm. 2017, 116, 17–30.
  • Minatti, E.; Viville, P.; Borsali, R.; Schappacher, M.; Deffieux, A.; Lazzaroni, R. Micellar Morphological Changes Promoted by Cyclization of PS-b-PI Copolymer: DLS and AFM Experiments. Macromolecules 2003, 36, 4125–4133. DOI: 10.1021/ma020927e.
  • Schulz, A.; Jaksch, S.; Schubel, R.; Wegener, E.; Di, Z.; Han, Y.; Meister, A.; Kressler, J.; Kabanov, A. V.; Luxenhofer, R.; et al. Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly (2-Oxazoline)s. ACS Nano. 2014, 8, 2686–2696. DOI: 10.1021/nn406388t.
  • Kohori, F.; Sakai, K.; Aoyagi, T.; Yokoyama, M.; Sakurai, Y.; Okano, T. Preparation and Characterization of Thermally Responsive Block Copolymer Micelles Comprising Poly (N-Isopropylacrylamide-b-DL-Lactide). J. Control. Release 1998, 55, 87–98. DOI: 10.1016/s0168-3659(98)00023-6.
  • Vasir, J. K.; Labhasetwar, V. Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles. Biomaterials 2008, 29, 4244–4252. DOI: 10.1016/j.biomaterials.2008.07.020.
  • Xiao, L.; Xiong, X.; Sun, X.; Zhu, Y.; Yang, H.; Chen, H.; Gan, L.; Xu, H.; Yang, X. Role of Cellular Uptake in the Reversal of Multidrug Resistance by PEG-b-PLA Polymeric Micelles. Biomaterials 2011, 32, 5148–5157. DOI: 10.1016/j.biomaterials.2011.03.071.
  • Li, J.; Huo, M.; Wang, J.; Zhou, J.; Mohammad, J. M.; Zhang, Y.; Zhu, Q.; Waddad, A. Y.; Zhang, Q. Redox-Sensitive Micelles Self-Assembled from Amphiphilic Hyaluronic Acid-Deoxycholic Acid Conjugates for Targeted Intracellular Delivery of Paclitaxel. Biomaterials 2012, 33, 2310–2320. DOI: 10.1016/j.biomaterials.2011.11.022.
  • Kuntsche, J.; Horst, J. C.; Bunjes, H. Cryogenic Transmission Electron Microscopy (cryo-TEM) for Studying the Morphology of Colloidal Drug Delivery Systems. Int. J. Pharm. 2011, 417, 120–137. DOI: 10.1016/j.ijpharm.2011.02.001.
  • Milne, J. L. S.; Borgnia, M. J.; Bartesaghi, A.; Tran, E. E. H.; Earl, L. A.; Schauder, D. M.; Lengyel, J.; Pierson, J.; Patwardhan, A.; Subramaniam, S.; et al. Cryo‐Electron Microscopy–a Primer for the Non‐Microscopist. Febs J. 2013, 280, 28–45. DOI: 10.1111/febs.12078.
  • Dokland, T. Back to the Basics: The Fundamentals of Cryo-Electron Microscopy. Microsc. Microanal. 2009, 15, 1538–1539. DOI: 10.1017/S1431927609099280.
  • Frederik, P. M.; Hubert, D. Cryoelectron Microscopy of Liposomes., in Methods in Enzymology. 2005, Elsevier. p. 431–448. DOI: 10.1016/S0076-6879(05)91024-0.
  • Fairley, N.; Hoang, B.; Allen, C. Morphological Control of Poly (Ethylene Glycol)-Block-Poly (ε-Caprolactone) Copolymer Aggregates in Aqueous Solution. Biomacromolecules 2008, 9, 2283–2291. DOI: 10.1021/bm800572p.
  • Di Cola, E.; Grillo, I.; Ristori, S. Small Angle X-Ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes. Pharmaceutics 2016, 8, 10. DOI: 10.3390/pharmaceutics8020010.
  • Dong, Y.-D.; Boyd, B. J. Applications of X-Ray Scattering in Pharmaceutical Science. Int. J. Pharm. 2011, 417, 101–111. DOI: 10.1016/j.ijpharm.2011.01.022.
  • Manaia, E. B.; Abuçafy, M. P.; Chiari-Andréo, B. G.; Silva, B. L.; Oshiro Junior, J. A.; Chiavacci, L. A. Physicochemical Characterization of Drug Nanocarriers. Int. J. Nanomedicine. 2017, 12, 4991–5011. DOI: 10.2147/IJN.S133832.
  • Fairclough, J.; Hamley, I.; Terrill, N. X-Ray Scattering in Polymers and Micelles. Radiat. Phys. Chem. 1999, 56, 159–173. DOI: 10.1016/S0969-806X(99)00279-0.
  • Hanafy, N. A.; El-Kemary, M.; Leporatti, S. Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy. Cancers. (Basel) 2018, 10, 238. DOI: 10.3390/cancers10070238.
  • Pedersen, J. S. Analysis of Small-Angle Scattering Data from Colloids and Polymer Solutions: Modeling and Least-Squares Fitting. Adv. Colloid Interface Sci. 1997, 70, 171–210. DOI: 10.1016/S0001-8686(97)00312-6.
  • Pedersen, J. S. Form Factors of Block Copolymer Micelles with Spherical, Ellipsoidal and Cylindrical Cores. J. Appl. Crystallogr. 2000, 33, 637–640. DOI: 10.1107/S0021889899012248.
  • Pedersen, J. S.; Lindner, P.; Zemb, T. Modelling of Small-Angle Scattering Data from Colloids and Polymer Systems, in Neutrons. X-Rays Light. 2002. 391–420.
  • Akiba, I.; Terada, N.; Hashida, S.; Sakurai, K.; Sato, T.; Shiraishi, K.; Yokoyama, M.; Masunaga, H.; Ogawa, H.; Ito, K.; et al. Encapsulation of a Hydrophobic Drug into a Polymer-Micelle Core Explored with Synchrotron SAXS. Langmuir 2010, 26, 7544–7551. DOI: 10.1021/la904355p.
  • Zhang, X.; Jackson, J. K.; Burt, H. M. Development of Amphiphilic Diblock Copolymers as Micellar Carriers of Taxol. Int. J. Pharm. 1996, 132, 195–206. DOI: 10.1016/0378-5173(95)04386-1.
  • Kim, S. C.; Kim, D. W.; Shim, Y. H.; Bang, J. S.; Oh, H. S.; Wan Kim, S.; Seo, M. H. In Vivo Evaluation of Polymeric Micellar Paclitaxel Formulation: Toxicity and Efficacy. J. Control. Release 2001, 72, 191–202. DOI: 10.1016/s0168-3659(01)00275-9.
  • Nishiyama, N.; Kataoka, K. Current State, Achievements, and Future Prospects of Polymeric Micelles as Nanocarriers for Drug and Gene Delivery. Pharmacol. Ther. 2006, 112, 630–648. DOI: 10.1016/j.pharmthera.2006.05.006.
  • Kabanov, A. V.; Alakhov, V. Y. Pluronic® Block Copolymers in Drug Delivery: From Micellar Nanocontainers to Biological Response Modifiers. Crit. Rev. Ther. Drug Carrier Syst. 2002, 19, 1–72. DOI: 10.1615/critrevtherdrugcarriersyst.v19.i1.10.
  • Rapoport, N.; et al. Controlled Drug Delivery to Drug-Sensitive and Multidrug Resistant Cells: Effects of Pluronic Micelles and Ultrasound. ACS Symposium Series, Vol. 846, 2003, ACS Publications. DOI: 10.1021/bk-2003-0846.ch007.
  • Rapoport, N. Tumor Targeting by Polymer Assemblies and Ultrasound Activation. MML Series 2006, 8, 305.
  • Khaliq, N. U.; Lee, J.; Kim, S.; Sung, D.; Kim, H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023, 15, 2102. DOI: 10.3390/pharmaceutics15082102.
  • Kataoka, K.; Matsumoto, T.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Fukushima, S.; Okamoto, K.; Kwon, G. S. Doxorubicin-Loaded Poly (Ethylene Glycol)–Poly (β-Benzyl-l-Aspartate) Copolymer Micelles: Their Pharmaceutical Characteristics and Biological Significance. J. Control. Release 2000, 64, 143–153. DOI: 10.1016/s0168-3659(99)00133-9.
  • Zhang, X.; Burt, H. M.; Mangold, G.; Dexter, D.; Von Hoff, D.; Mayer, L.; Hunter, W. L. Anti-Tumor Efficacy and Biodistribution of Intravenous Polymeric Micellar Paclitaxel. Anticancer. Drugs. 1997, 8, 696–701. DOI: 10.1097/00001813-199708000-00008.
  • Lavasanifar, A.; Samuel, J.; Kwon, G. S. The Effect of Fatty Acid Substitution on the in Vitro Release of Amphotericin B from Micelles Composed of Poly (Ethylene Oxide)-Block-Poly (N-Hexyl stearate-L-Aspartamide). J. Control. Release 2002, 79, 165–172. DOI: 10.1016/s0168-3659(01)00537-5.
  • Fournier, E.; Dufresne, M.-H.; Smith, D. C.; Ranger, M.; Leroux, J.-C. A Novel One-Step Drug-Loading Procedure for Water-Soluble Amphiphilic Nanocarriers. Pharm. Res. 2004, 21, 962–968. DOI: 10.1023/b:Pham.0000029284.40637.69.
  • Roy, A.; Manna, K.; Ray, P. G.; Dhara, S.; Pal, S. β-Cyclodextrin-Based Ultrahigh Stretchable, Flexible, Electro-and Pressure-Responsive, Adhesive, Transparent Hydrogel as Motion Sensor. ACS Appl. Mater. Interfaces. 2022, 14, 17065–17080. DOI: 10.1021/acsami.2c00101.
  • Roy, A.; Guha Ray, P.; Manna, K.; Banerjee, C.; Dhara, S.; Pal, S. Poly (N-Vinyl Imidazole) Cross-Linked β-Cyclodextrin Hydrogel for Rapid Hemostasis in Severe Renal Arterial Hemorrhagic Model. Biomacromolecules 2021, 22, 5256–5269. DOI: 10.1021/acs.biomac.1c01174.
  • Roy, A.; Manna, K.; Dey, S.; Pal, S. Chemical Modification of β-Cyclodextrin towards Hydrogel Formation. Carbohydr. Polym. 2023, 306, 120576. DOI: 10.1016/j.carbpol.2023.120576.
  • Manna, K.; Patra, P.; Roy, A.; Roy, R. K.; Chaitanya Sunka, K.; Dhara, S.; Patra, N.; Pal, S. Amino Acid Inspired Alginate-Based pH Sensitive Polymeric Micelles via Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Appl. Polym. Mater. 2022, 4, 4432–4444. DOI: 10.1021/acsapm.2c00393.
  • Roy, A.; Manna, K. Methods for Production of Functional Carbon Nanostructures from Biomass, in Biomass-Based Functional Carbon Nanostructures for Supercapacitors. 2023, Springer. p. 41–74. DOI: 10.1007/978-981-99-0996-4_2.
  • Roy, A.; Guha Ray, P.; Bose, A.; Dhara, S.; Pal, S. pH-Responsive Copolymeric Network Gel Using Methacrylated β-Cyclodextrin for Controlled Codelivery of Hydrophilic and Hydrophobic Drugs. ACS Appl. Bio. Mater. 2022, 5, 3530–3543. DOI: 10.1021/acsabm.2c00473.
  • Roy, A.; Samanta, S.; Singha, K.; Maity, P.; Kumari, N.; Ghosh, A.; Dhara, S.; Pal, S. Development of a Thermoresponsive Polymeric Composite Film Using Cross-Linked β-Cyclodextrin Embedded with Carbon Quantum Dots as a Transdermal Drug Carrier. ACS Appl. Bio Mater. 2020, 3, 3285–3293. DOI: 10.1021/acsabm.0c00246.
  • Roy, A.; Maity, P. P.; Bose, A.; Dhara, S.; Pal, S. β-Cyclodextrin Based pH and Thermo-Responsive Biopolymeric Hydrogel as a Dual Drug Carrier. Mater. Chem. Front. 2019, 3, 385–393. DOI: 10.1039/C8QM00452H.
  • Roy, A.; Maity, P. P.; Dhara, S.; Pal, S. Biocompatible, Stimuli‐Responsive Hydrogel of Chemically Crosslinked β‐Cyclodextrin as Amoxicillin Carrier. J. Appl. Polymer Sci. 2018, 135, 45939. DOI: 10.1002/app.45939.
  • Roy, A.; Manna, K.; Pal, S. Recent Advances in Various Stimuli-Responsive Hydrogels: From Synthetic Designs to Emerging Healthcare Applications. Mater. Chem. Front. 2022, 6, 2338–2385. DOI: 10.1039/D2QM00469K.
  • Dey, S.; Roy, A.; Manna, K.; Pal, S. The UCST Phase Transition of a Dextran Based Copolymer in Aqueous Media with Tunable Thermoresponsive Behavior. Polym. Chem. 2022, 13, 3865–3869. DOI: 10.1039/D2PY00626J.
  • Schattling, P.; Jochum, F. D.; Theato, P. Multi-Stimuli Responsive Polymers–the All-in-One Talents. Polym. Chem. 2014, 5, 25–36. DOI: 10.1039/C3PY00880K.
  • Nunes, S. P.; Behzad, A. R.; Hooghan, B.; Sougrat, R.; Karunakaran, M.; Pradeep, N.; Vainio, U.; Peinemann, K.-V. Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly. ACS Nano. 2011, 5, 3516–3522. DOI: 10.1021/nn200484v.
  • Li, G.; Song, S.; Guo, L.; Ma, S. Self‐Assembly of Thermo‐and pH‐Responsive Poly (Acrylic Acid)‐b‐Poly (N‐Isopropylacrylamide) Micelles for Drug Delivery. J. Polym. Sci. A Polym. Chem. 2008, 46, 5028–5035. DOI: 10.1002/pola.22831.
  • Liu, F.; Urban, M. W. Dual Temperature and pH Responsiveness of Poly (2-(N, N-Dimethylamino) Ethyl Methacrylate-co-n-Butyl Acrylate) Colloidal Dispersions and Their Films. Macromolecules 2008, 41, 6531–6539. DOI: 10.1021/ma8006784.
  • Yang, X.; Yu, T.; Zeng, Y.; Lian, K.; Zhou, X.; Ke, J.; Li, Y.; Yuan, H.; Hu, F. PH-Responsive Biomimetic Polymeric Micelles as Lymph Node-Targeting Vaccines for Enhanced Antitumor Immune Responses. Biomacromolecules 2020, 21, 2818–2828. DOI: 10.1021/acs.biomac.0c00518.
  • Son, I.; Lee, Y.; Baek, J.; Park, M.; Han, D.; Min, S. K.; Lee, D.; Kim, B.-S. pH-Responsive Amphiphilic Polyether Micelles with Superior Stability for Smart Drug Delivery. Biomacromolecules 2021, 22, 2043–2056. DOI: 10.1021/acs.biomac.1c00163.
  • Zhou, C.; Hu, X.; Liu, Q.; Wang, L.; Zhou, Y.; Jin, Y.; Ma, Y.; Liu, Y. Stromal Barrier-Dismantled Nanodrill-like and Cancer Cell-Targeted pH-Responsive Polymeric Micelles for Further Enhancing the Anticancer Efficacy of Doxorubicin. ACS Biomater. Sci. Eng. 2021, 7, 5690–5705. DOI: 10.1021/acsbiomaterials.1c01131.
  • Hwang, E.; Kim, K.; Lee, C. G.; Kwon, T.-H.; Lee, S.-H.; Min, S. K.; Kim, B.-S. Tailorable Degradation of pH-Responsive All-Polyether Micelles: Unveiling the Role of Monomer Structure and Hydrophilic–Hydrophobic Balance. Macromolecules 2019, 52, 5884–5893. DOI: 10.1021/acs.macromol.9b00823.
  • Han, S.; Lee, J.; Jung, E.; Park, S.; Sagawa, A.; Shibasaki, Y.; Lee, D.; Kim, B.-S. Mechanochemical Drug Conjugation via pH-Responsive Imine Linkage for Polyether Prodrug Micelles. ACS Appl. Bio Mater. 2021, 4, 2465–2474. DOI: 10.1021/acsabm.0c01437.
  • He, L.; Qin, X.; Fan, D.; Feng, C.; Wang, Q.; Fang, J. Dual-Stimuli Responsive Polymeric Micelles for the Effective Treatment of Rheumatoid Arthritis. ACS Appl. Mater. Interfaces. 2021, 13, 21076–21086. DOI: 10.1021/acsami.1c04953.
  • Jie, M.; et al. A Simple Dual-pH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. 2016.
  • Jin, Y.; Song, L.; Su, Y.; Zhu, L.; Pang, Y.; Qiu, F.; Tong, G.; Yan, D.; Zhu, B.; Zhu, X.; et al. Oxime Linkage: A Robust Tool for the Design of pH-Sensitive Polymeric Drug Carriers. Biomacromolecules 2011, 12, 3460–3468. DOI: 10.1021/bm200956u.
  • Chen, D.; Song, P.; Jiang, F.; Meng, X.; Sui, W.; Shu, C.; Wan, L.-J. pH-Responsive Mechanism of a Deoxycholic Acid and Folate Comodified Chitosan Micelle under Cancerous Environment. J. Phys. Chem. B 2013, 117, 1261–1268. DOI: 10.1021/jp310677p.
  • Hsu, C.-W.; Hsieh, M.-H.; Xiao, M.-C.; Chou, Y.-H.; Wang, T.-H.; Chiang, W.-H. pH-Responsive Polymeric Micelles Self-Assembled from Benzoic-Imine-Containing Alkyl-Modified PEGylated Chitosan for Delivery of Amphiphilic Drugs. Int. J. Biol. Macromol. 2020, 163, 1106–1116. DOI: 10.1016/j.ijbiomac.2020.07.110.
  • Xu, Z.; Xue, P.; Gao, Y.-E.; Liu, S.; Shi, X.; Hou, M.; Kang, Y. pH-Responsive Polymeric Micelles Based on Poly (Ethyleneglycol)-b-Poly (2-(Diisopropylamino) Ethyl Methacrylate) Block Copolymer for Enhanced Intracellular Release of Anticancer Drugs. J. Colloid Interface Sci. 2017, 490, 511–519. DOI: 10.1016/j.jcis.2016.11.091.
  • Li, Q.; Yao, W.; Yu, X.; Zhang, B.; Dong, J.; Jin, Y. Drug-Loaded pH-Responsive Polymeric Micelles: Simulations and Experiments of Micelle Formation, Drug Loading and Drug Release. Colloids Surf. B Biointerfaces 2017, 158, 709–716. DOI: 10.1016/j.colsurfb.2017.07.063.
  • Harnoy, A. J.; Buzhor, M.; Tirosh, E.; Shaharabani, R.; Beck, R.; Amir, R. J. Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles. Biomacromolecules 2017, 18, 1218–1228. DOI: 10.1021/acs.biomac.6b01906.
  • Xiong, J.; Gao, H. Matrix Metalloproteases-Responsive Nanomaterials for Tumor Targeting Diagnosis and Treatment. J. Microencapsul. 2017, 34, 440–453. DOI: 10.1080/02652048.2017.1343873.
  • Wang, H.-X.; Yang, X.-Z.; Sun, C.-Y.; Mao, C.-Q.; Zhu, Y.-H.; Wang, J. Matrix Metalloproteinase 2-Responsive Micelle for siRNA Delivery. Biomaterials 2014, 35, 7622–7634. DOI: 10.1016/j.biomaterials.2014.05.050.
  • Bacinello, D.; Garanger, E.; Taton, D.; Tam, K. C.; Lecommandoux, S. Enzyme-Degradable Self-Assembled Nanostructures from Polymer–Peptide Hybrids. Biomacromolecules 2014, 15, 1882–1888. DOI: 10.1021/bm500296n.
  • Dai, Y.; Chen, X.; Zhang, X. Recent Advances in Stimuli-Responsive Polymeric Micelles via Click Chemistry. Polym. Chem. 2019, 10, 34–44. DOI: 10.1039/C8PY01174E.
  • Yan, K.; Zhang, S.; Zhang, K.; Miao, Y.; Qiu, Y.; Zhang, P.; Jia, X.; Zhao, X. Enzyme-Responsive Polymeric Micelles with Fluorescence Fabricated through Aggregation-Induced Copolymer Self-Assembly for Anticancer Drug Delivery. Polym. Chem. 2020, 11, 7704–7713. DOI: 10.1039/D0PY01328E.
  • Park, J.; Jo, S.; Lee, Y. M.; Saravanakumar, G.; Lee, J.; Park, D.; Kim, W. J. Enzyme-Triggered Disassembly of Polymeric Micelles by Controlled Depolymerization via Cascade Cyclization for Anticancer Drug Delivery. ACS Appl. Mater. Interfaces. 2021, 13, 8060–8070. DOI: 10.1021/acsami.0c22644.
  • Wright, D. B.; Ramírez-Hernández, A.; Touve, M. A.; Carlini, A. S.; Thompson, M. P.; Patterson, J. P.; de Pablo, J. J.; Gianneschi, N. C. Enzyme-Induced Kinetic Control of Peptide–Polymer Micelle Morphology. ACS Macro Lett. 2019, 8, 676–681. DOI: 10.1021/acsmacrolett.8b00887.
  • Slor, G.; Olea, A. R.; Pujals, S.; Tigrine, A.; De La Rosa, V. R.; Hoogenboom, R.; Albertazzi, L.; Amir, R. J. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021, 22, 1197–1210. DOI: 10.1021/acs.biomac.0c01708.
  • Kern, H. B.; Srinivasan, S.; Convertine, A. J.; Hockenbery, D.; Press, O. W.; Stayton, P. S. Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides. Mol. Pharm. 2017, 14, 1450–1459. DOI: 10.1021/acs.molpharmaceut.6b01178.
  • Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-Responsive Polymeric Micelles of Cabazitaxel for Prostate Cancer Targeted Therapy. Acta Biomater. 2020, 113, 501–511. DOI: 10.1016/j.actbio.2020.06.019.
  • Logtenberg, H.; Browne, W. R. Electrochemistry of Dithienylethenes and Their Application in Electropolymer Modified Photo-and Redox Switchable Surfaces. Org. Biomol. Chem. 2013, 11, 233–243. DOI: 10.1039/c2ob26723c.
  • Mazurowski, M.; Gallei, M.; Li, J.; Didzoleit, H.; Stühn, B.; Rehahn, M. Redox-Responsive polymer brushes grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization. Macromolecules 2012, 45, 8970–8981. DOI: 10.1021/ma3020195.
  • Phillips, D. J.; Gibson, M. I. Degradable Thermoresponsive Polymers Which Display Redox-Responsive LCST Behaviour. Chem. Commun. (Camb.) 2012, 48, 1054–1056. DOI: 10.1039/c1cc16323j.
  • Cai, Q.; Jiang, J.; Zhang, H.; Ge, P.; Yang, L.; Zhu, W. Reduction-Responsive Anticancer Nanodrug Using a Full Poly (Ethylene Glycol) Carrier. ACS Appl. Mater. Interfaces. 2021, 13, 19387–19397. DOI: 10.1021/acsami.1c04648.
  • Xin, X.; Lin, F.; Wang, Q.; Yin, L.; Mahato, R. I. ROS-Responsive Polymeric Micelles for Triggered Simultaneous Delivery of PLK1 Inhibitor/miR-34a and Effective Synergistic Therapy in Pancreatic Cancer. ACS Appl. Mater. Interfaces. 2019, 11, 14647–14659. DOI: 10.1021/acsami.9b02756.
  • Hu, J.; Zhuang, W.; Ma, B.; Su, X.; Yu, T.; Li, G.; Hu, Y.; Wang, Y. Redox-Responsive Biomimetic Polymeric Micelle for Simultaneous Anticancer Drug Delivery and Aggregation-Induced Emission Active Imaging. Bioconjug. Chem. 2018, 29, 1897–1910. DOI: 10.1021/acs.bioconjchem.8b00119.
  • Wan, D.; Li, C.; Pan, J. Polymeric Micelles with Reduction-Responsive Function for Targeted Cancer Chemotherapy. ACS Appl. Bio Mater. 2020, 3, 1139–1146. DOI: 10.1021/acsabm.9b01070.
  • He, H.; Zhuang, W.; Ma, B.; Su, X.; Yu, T.; Hu, J.; Chen, L.; Peng, R.; Li, G.; Wang, Y.; et al. Oxidation-Responsive and Aggregation-Induced Emission Polymeric Micelles with Two-Photon Excitation for Cancer Therapy and Bioimaging. ACS Biomater. Sci. Eng. 2019, 5, 2577–2586. DOI: 10.1021/acsbiomaterials.9b00212.
  • Zhuang, Y.; Su, Y.; Peng, Y.; Wang, D.; Deng, H.; Xi, X.; Zhu, X.; Lu, Y. Facile Fabrication of Redox-Responsive Thiol-Containing Drug Delivery System via RAFT Polymerization. Biomacromolecules 2014, 15, 1408–1418. DOI: 10.1021/bm500018s.
  • Zhu, C.; Zhang, H.; Li, W.; Luo, L.; Guo, X.; Wang, Z.; Kong, F.; Li, Q.; Yang, J.; Du, Y.; et al. Suppress Orthotopic Colon Cancer and Its Metastasis through Exact Targeting and Highly Selective Drug Release by a Smart Nanomicelle. Biomaterials 2018, 161, 144–153. DOI: 10.1016/j.biomaterials.2018.01.043.
  • Zhou, Y.; Wen, H.; Gu, L.; Fu, J.; Guo, J.; Du, L.; Zhou, X.; Yu, X.; Huang, Y.; Wang, H.; et al. Aminoglucose-Functionalized, Redox-Responsive Polymer Nanomicelles for Overcoming Chemoresistance in Lung Cancer Cells. J. Nanobiotechnology. 2017, 15, 87. DOI: 10.1186/s12951-017-0316-z.
  • Zhu, Y.; Wang, X.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Exogenous Vitamin C Boosts the Antitumor Efficacy of Paclitaxel Containing Reduction-Sensitive Shell-Sheddable Micelles in Vivo. J. Control. Release 2017, 250, 9–19. DOI: 10.1016/j.jconrel.2017.02.002.
  • Huo, M.; Liu, Y.; Wang, L.; Yin, T.; Qin, C.; Xiao, Y.; Yin, L.; Liu, J.; Zhou, J. Redox-Sensitive Micelles Based on O, N-Hydroxyethyl Chitosan–Octylamine Conjugates for Triggered Intracellular Delivery of Paclitaxel. Mol. Pharm. 2016, 13, 1750–1762. DOI: 10.1021/acs.molpharmaceut.5b00696.
  • Chen, F.-Q.; Zhang, J.-M.; Fang, X.-F.; Yu, H.; Liu, Y.-L.; Li, H.; Wang, Y.-T.; Chen, M.-W. Reversal of Paclitaxel Resistance in Human Ovarian Cancer Cells with Redox-Responsive Micelles Consisting of α-Tocopheryl Succinate-Based Polyphosphoester Copolymers. Acta Pharmacol. Sin. 2017, 38, 859–873. DOI: 10.1038/aps.2016.150.
  • Behroozi, F.; Abdkhodaie, M.-J.; Abandansari, H. S.; Satarian, L.; Molazem, M.; Al-Jamal, K. T.; Baharvand, H. Engineering Folate-Targeting Diselenide-Containing Triblock Copolymer as a Redox-Responsive Shell-Sheddable Micelle for Antitumor Therapy in Vivo. Acta Biomater. 2018, 76, 239–256. DOI: 10.1016/j.actbio.2018.05.031.
  • Jeong, B.; Gutowska, A. Lessons from Nature: Stimuli-Responsive Polymers and Their Biomedical Applications. Trends Biotechnol. 2002, 20, 305–311. DOI: 10.1016/s0167-7799(02)01962-5.
  • Liu, X.-Y.; Cheng, F.; Liu, Y.; Liu, H.-J.; Chen, Y. Preparation and Characterization of Novel Thermoresponsive Gold Nanoparticles and Their Responsive Catalysis Properties. J. Mater. Chem 2010, 20, 360–368. DOI: 10.1039/B915313F.
  • Xue, B.; Gao, L.; Hou, Y.; Liu, Z.; Jiang, L. Temperature Controlled Water/Oil Wettability of a Surface Fabricated by a Block Copolymer: Application as a Dual Water/Oil On–Off Switch. Adv. Mater. 2013, 25, 273–277. DOI: 10.1002/adma.201202799.
  • Meersman, F.; Wang, J.; Wu, Y.; Heremans, K. Pressure Effect on the Hydration Properties of Poly (N-Isopropylacrylamide) in Aqueous Solution Studied by FTIR Spectroscopy. Macromolecules 2005, 38, 8923–8928. DOI: 10.1021/ma051582d.
  • Soltantabar, P.; Calubaquib, E. L.; Mostafavi, E.; Biewer, M. C.; Stefan, M. C. Enhancement of Loading Efficiency by Coloading of Doxorubicin and Quercetin in Thermoresponsive Polymeric Micelles. Biomacromolecules 2020, 21, 1427–1436. DOI: 10.1021/acs.biomac.9b01742.
  • Guo, X.; Li, D.; Yang, G.; Shi, C.; Tang, Z.; Wang, J.; Zhou, S. Thermo-Triggered Drug Release from Actively Targeting Polymer Micelles. ACS Appl. Mater. Interfaces. 2014, 6, 8549–8559. DOI: 10.1021/am501422r.
  • Kanto, R.; Yonenuma, R.; Yamamoto, M.; Furusawa, H.; Yano, S.; Haruki, M.; Mori, H. Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly (Vinyl Amine)-Based Block Copolymers. Langmuir 2021, 37, 3001–3014. DOI: 10.1021/acs.langmuir.0c02197.
  • Bhadran, A.; Polara, H.; Calubaquib, E. L.; Wang, H.; Babanyinah, G. K.; Shah, T.; Anderson, P. A.; Saleh, M.; Biewer, M. C.; Stefan, M. C.; et al. Reversible Cross-Linked Thermoresponsive Polycaprolactone Micelles for Enhanced Stability and Controlled Release. Biomacromolecules 2023, 24, 5823–5835. DOI: 10.1021/acs.biomac.3c00832.
  • Jochum, F. D.; Theato, P. Temperature and Light Sensitive Copolymers Containing Azobenzene Moieties Prepared via a Polymer Analogous Reaction. Polymer 2009, 50, 3079–3085. DOI: 10.1016/j.polymer.2009.05.041.
  • Wilkinson, F.; Hobley, J.; Naftaly, M. Photochromism of Spiro-Naphthoxazines: Molar Absorption Coefficients and Quantum Efficiencies. Faraday Trans. 1992, 88, 1511–1517. DOI: 10.1039/ft9928801511.
  • Zhang, Y.; Lu, G.; Yu, Y.; Zhang, H.; Gao, J.; Sun, Z.; Lu, Y.; Zou, H. NIR-Responsive Copolymer Upconversion Nanocomposites for Triggered Drug Release in Vitro and in Vivo. ACS Appl. Bio Mater. 2018, 2, 495–503. DOI: 10.1021/acsabm.8b00681.
  • Huang, Y.; Shen, L.; Guo, D.; Yasen, W.; Wu, Y.; Su, Y.; Chen, D.; Qiu, F.; Yan, D.; Zhu, X.; et al. A NIR-Triggered Gatekeeper of Supramolecular Conjugated Unimicelles with Two-Photon Absorption for Controlled Drug Release. Chem. Commun. (Camb.) 2019, 55, 6735–6738. DOI: 10.1039/c9cc02901j.
  • Kim, J.; Lee, Y. J.; Ku, K. H.; Kim, B. J. Effect of Molecular Structure of Photoswitchable Surfactant on Light-Responsive Shape Transition of Block Copolymer Particles. Macromolecules 2022, 55, 8355–8364. DOI: 10.1021/acs.macromol.2c01465.
  • Li, Y.; Qian, Y.; Liu, T.; Zhang, G.; Liu, S. Light-Triggered Concomitant Enhancement of Magnetic Resonance Imaging Contrast Performance and Drug Release Rate of Functionalized Amphiphilic Diblock Copolymer Micelles. Biomacromolecules 2012, 13, 3877–3886. DOI: 10.1021/bm301425j.
  • Pearson, S.; Vitucci, D.; Khine, Y. Y.; Dag, A.; Lu, H.; Save, M.; Billon, L.; Stenzel, M. H. Light-Responsive Azobenzene-Based Glycopolymer Micelles for Targeted Drug Delivery to Melanoma Cells. Eur. Polym. J. 2015, 69, 616–627. DOI: 10.1016/j.eurpolymj.2015.04.001.
  • Wang, G.; Tong, X.; Zhao, Y. Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates. Macromolecules 2004, 37, 8911–8917. DOI: 10.1021/ma048416a.
  • Hu, D.; Peng, H.; Niu, Y.; Li, Y.; Xia, Y.; Li, L.; He, J.; Liu, X.; Xia, X.; Lu, Y.; et al. Reversibly Light‐Responsive Biodegradable Poly (Carbonate) Micelles Constructed via Cu AAC Reaction. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 750–760. DOI: 10.1002/pola.27499.
  • Lin, S.; Zhu, L.; Li, Z.; Yue, S.; Wang, Z.; Xu, Y.; Zhang, Y.; Gao, Q.; Chen, J.; Yin, T.; et al. Ultrasound-Responsive Glycopolymer Micelles for Targeted Dual Drug Delivery in Cancer Therapy. Biomater. Sci. 2023, 11, 6149–6159. DOI: 10.1039/d3bm01101a.
  • Zhang, H.; Xia, H.; Wang, J.; Li, Y. High Intensity Focused Ultrasound-Responsive Release Behavior of PLA-b-PEG Copolymer Micelles. J. Control. Release 2009, 139, 31–39. DOI: 10.1016/j.jconrel.2009.05.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.