77
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An environment-stable and tough wearable sensor enabled by xanthan gum-assisted hydrogel

, , &
Pages 398-404 | Received 17 Jan 2024, Accepted 08 Apr 2024, Published online: 22 Apr 2024

References

  • Gao, Y.; Gu, S.; Jia, F.; Gao, G. A Skin-Matchable, Recyclable and Biofriendly Strain Sensor Based on a Hydrolyzed Keratin-Containing Hydrogel. J. Mater. Chem. A. 2020, 8, 24175–24183. DOI: 10.1039/D0TA07883B.
  • Gao, Y.; Gu, S.; Jia, F.; Wang, Q.; Gao, G. “All-in-One” Hydrolyzed Keratin Protein-Modified Polyacrylamide Composite Hydrogel Transducer. Chem. Eng. J. 2020, 398, 125555. DOI: 10.1016/j.cej.2020.125555.
  • Huang, H.; Han, L.; Fu, X.; Wang, Y.; Yang, Z.; Pan, L.; Xu, M. Multiple Stimuli Responsive and Identifiable Zwitterionic Ionic Conductive Hydrogel for Bionic Electronic Skin. Adv. Elect. Materials. 2020, 6, 2000239. DOI: 10.1002/aelm.202000239.
  • Lee, J.; Tan, M. W. M.; Parida, K.; Thangavel, G.; Park, S. A.; Park, T.; Lee, P.S. Water-Processable, Stretchable, Self-Healable, Thermally Stable, and Transparent Ionic Conductors for Actuators and Sensors. Adv. Mater. 2020, 32, e1906679.
  • Gao, Y.; Wang, Y.; Xia, S.; Gao, G. An Environment-Stable Hydrogel with Skin-Matchable Performance for Human-Machine Interface. Sci. China Mater. 2021, 64, 2313–2324. DOI: 10.1007/s40843-020-1624-y.
  • Ge, W.; Cao, S.; Yang, Y.; Rojas, O. J.; Wang, X. Nanocellulose/LiCl Systems Enable Conductive and Stretchable Electrolyte Hydrogels with Tolerance to Dehydration and Extreme Cold Conditions. Chem. Eng. J. 2021, 408, 127306. DOI: 10.1016/j.cej.2020.127306.
  • Sui, X.; Guo, H.; Cai, C.; Li, Q.; Wen, C.; Zhang, X.; Wang, X.; Yang, J.; Zhang, L. Ionic Conductive Hydrogels with Long-Lasting Antifreezing, Water Retention and Self-Regeneration Abilities. Chem. Eng. J. 2021, 419, 129478. DOI: 10.1016/j.cej.2021.129478.
  • Yang, Y.; Yang, Y.; Cao, Y.; Wang, X.; Chen, Y.; Liu, H.; Gao, Y.; Wang, J.; Liu, C.; Wang, W.; et al. Anti-Freezing, Resilient and Tough Hydrogels for Sensitive and Large-Range Strain and Pressure Sensors. Chem. Eng. J. 2021, 403, 126431. DOI: 10.1016/j.cej.2020.126431.
  • Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29, 1700321. DOI: 10.1002/adma.201700321.
  • Lei, Z.; Wu, P. A Supramolecular Biomimetic Skin Combining a Wide Spectrum of Mechanical Properties and Multiple Sensory Capabilities. Nat. Commun. 2018, 9, 1134. DOI: 10.1038/s41467-018-03456-w.
  • Lei, Z.; Wu, P. Zwitterionic Skins with a Wide Scope of Customizable Functionalities. ACS Nano. 2018, 12, 12860–12868. DOI: 10.1021/acsnano.8b08062.
  • Wang, Q.; Lei, Z.; Wu, P. A Multifunctional Skin-like Sensor Based on a 3D Printed Thermo-Responsive Hydrogel. Mater. Horiz. 2017, 4, 694–700.
  • Yu, Q.; Qin, Z.; Ji, F.; Chen, S.; Luo, S.; Yao, M.; Wu, X.; Liu, W.; Sun, X.; Zhang, H.; et al. Low-Temperature Tolerant Strain Sensors Based on Triple Crosslinked Organohydrogels with Ultrastretchability. Chem. Eng. J. 2020, 404, 126559. DOI: 10.1016/j.cej.2020.126559.
  • Chen, F.; Zhou, D.; Wang, J.; Li, T.; Zhou, X.; Gan, T.; Handschuh-Wang, S.; Zhou, X. Rational Fabrication of anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement. Angew. Chem. Int. Ed. Engl. 2018, 57, 6568–6571. DOI: 10.1002/anie.201803366.
  • Hu, L.; Wang, Y.; Liu, Q.; Liu, M.; Yang, F.; Wang, C.; Pan, P.; Wang, L.; Chen, L.; Chen, J.; et al. Real-Time Monitoring Flexible Hydrogels Based on Dual Physically Cross-Linked Network for Promoting Wound Healing. Chin. Chem. Lett. 2023, 34, 108262. DOI: 10.1016/j.cclet.2023.108262.
  • Zhou, Y.; Zhang, L.; Lin, X.; Lu, J.; Huang, Z.; Sun, P.; Zhang, Y.; Xu, X.; Li, Q.; Liu, H.; et al. Dual-Network Polyvinyl Alcohol/Polyacrylamide/Xanthan Gum Ionic Conductive Hydrogels for Flexible Electronic Devices. Int. J. Biol. Macromol. 2023, 233, 123573. DOI: 10.1016/j.ijbiomac.2023.123573.
  • Jian, Y.; Handschuh-Wang, S.; Zhang, J.; Lu, W.; Zhou, X.; Chen, T. Biomimetic anti-Freezing Polymeric Hydrogels: Keeping Soft-Wet Materials Active in Cold Environments. Mater. Horiz. 2021, 8, 351–369. DOI: 10.1039/d0mh01029d.
  • Bai, Y.; Chen, B.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z. Transparent Hydrogel with Enhanced Water Retention Capacity by Introducing Highly Hydratable Salt. Appl. Phys. Lett. 2014, 105, 151903.
  • Morelle, X. P.; Illeperuma, W. R.; Tian, K.; Bai, R.; Suo, Z.; Vlassak, J. J. Highly Stretchable and Tough Hydrogels below Water Freezing Temperature. Adv. Mater. 2018, 30, e1801541. DOI: 10.1002/adma.201801541.
  • Guan, L.; Yan, S.; Liu, X.; Li, X.; Gao, G. Wearable Strain Sensors Based on Casein-Driven Tough, Adhesive and anti-Freezing Hydrogels for Monitoring Human-Motion. J. Mater. Chem. B. 2019, 7, 5230–5236. DOI: 10.1039/c9tb01340g.
  • Chen, G.; Huang, J.; Gu, J.; Peng, S.; Xiang, X.; Chen, K.; Yang, X.; Guan, L.; Jiang, X.; Hou, L.; et al. Highly Tough Supramolecular Double Network Hydrogel Electrolytes for an Artificial Flexible and Low-Temperature Tolerant Sensor. J. Mater. Chem. A. 2020, 8, 6776–6784. DOI: 10.1039/D0TA00002G.
  • Pan, X.; Wang, Q.; Ning, D.; Dai, L.; Liu, K.; Ni, Y.; Chen, L.; Huang, L. Ultra-Flexible Self-Healing Guar Gum-Glycerol Hydrogel with Injectable, anti-Freeze, and Strain-Sensitive Properties. ACS Biomater. Sci. Eng. 2018, 4, 3397–3404. DOI: 10.1021/acsbiomaterials.8b00657.
  • Han, L.; Liu, K.; Wang, M.; et al. Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance, Adv. Funct. Mater. 2018, 28, 1704195.
  • Liao, H.; Guo, X.; Wan, P.; et al. Conductive MXene Nanocomposite Organohydrogel for Flexible. Healable, Low‐Temperature Tolerant Strain Sensors. Adv. Funct. Mater. 2019, 29, 1904507.
  • Lou, D.; Wang, C.; He, Z.; Sun, X.; Luo, J.; Li, J. Robust Organohydrogel with Flexibility and Conductivity across the Freezing and Boiling Temperatures of Water. Chem. Commun. 2019, 55, 8422–8425. DOI: 10.1039/c9cc04239c.
  • Qin, Z.; Sun, X.; Zhang, H.; Yu, Q.; Wang, X.; He, S.; Yao, F.; Li, J. A Transparent, Ultrastretchable and Fully Recyclable Gelatin Organohydrogel Based Electronic Sensor with Broad Operating Temperature. J. Mater. Chem. A. 2020, 8, 4447–4456. DOI: 10.1039/C9TA13196E.
  • Wei, Y.; Xiang, L.; Ou, H.; Li, F.; Zhang, Y.; Qian, Y.; Hao, L.; Diao, J.; Zhang, M.; Zhu, P.; Liu, Y.; Kuang, Y.; Chen, G. MXene‐Based Conductive Organohydrogels with Long‐Term Environmental Stability and Multifunctionality, Adv. Funct. Mater. 2020, 30, 2005135.
  • Wu, X.; Liao, H.; Ma, D.; Chao, M.; Wang, Y.; Jia, X.; Wan, P.; Zhang, L. A Wearable, Self-Adhesive, Long-Lastingly Moist and Healable Epidermal Sensor Assembled from Conductive MXene Nanocomposites. J. Mater. Chem. C. 2020, 8, 1788–1795. DOI: 10.1039/C9TC05575D.
  • Sui, X.; Guo, H.; Chen, P.; Zhu, Y.; Wen, C.; Gao, Y.; Yang, J.; Zhang, X.; Zhang, L. Zwitterionic Osmolyte‐Based Hydrogels with Antifreezing Property. High Conductivity, and Stable Flexibility at Subzero Temperature. Adv. Funct. Mater. 2019, 30, 1907986.
  • Ye, Y.; Zhang, Y.; Chen, Y.; Han, X.; Jiang, F. Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezing‐Tolerant Ionic Conductive Organohydrogel for Multi‐Functional Sensors. Adv. Funct. Mater. 2020, 30, 2003430.
  • Wang, Z.; Mo, F.; Ma, L.; Yang, Q.; Liang, G.; Liu, Z.; Li, H.; Li, N.; Zhang, H.; Zhi, C.; et al. Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn-MnO2 Battery and a Flexible Battery-Sensor System. ACS Appl. Mater. Interf. 2018, 10, 44527–44534. DOI: 10.1021/acsami.8b17607.
  • Wu, L.; Li, L.; Qu, M.; Wang, H.; Bin, Y. Mussel-Inspired Self-Adhesive, Antidrying, and Antifreezing Poly(Acrylic Acid)/Bentonite/Polydopamine Hybrid Glycerol-Hydrogel and the Sensing Application. ACS Appl. Polym. Mater. 2020, 2, 3094–3106. DOI: 10.1021/acsapm.0c00264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.