42
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

pH-responsive and mechanical strong chitosan-based hydrogel reinforced with rice straw cellulose micro-fibrils for efficient removal of cu(II)

, , &
Pages 405-418 | Received 15 Feb 2024, Accepted 03 Apr 2024, Published online: 07 May 2024

References

  • Yang, Z.; Ren, L.; Jin, L.; Huang, L.; He, Y.; Tang, T.; Yang, W.; Wang, W. In-Situ Functionalization of Poly(m-Phenylenediamine) Nanoparticles on Bacterial Cellulose for Chromium Removal. Chem. Eng. 2018, 344, 441–452. DOI: 10.1016/j.cej.2018.03.086.
  • Ren, T. T.; Peng, J. W.; Yuan, H. M.; Liu, Z. H.; Li, Q.; Ma, Q.; Li, X. G.; Guo, X.; Wu, Q. X. Nanocellulose-Based Hydrogel Incorporating Silver Nanoclusters for Sensitive Detection and Efficient Removal of Hexavalent Chromium. J. European Polymer 2022, 175, 111343. DOI: 10.1016/j.eurpolymj.2022.111343.
  • Meneses, I. P.; Novaes, S. D.; Dezotti, R. S.; Oliveira, P. V.; Siqueira, P. D. F. CTAB Modified Carboxymethyl Cellulose/Bagasse Cryogels for the Efficient Removal of Bwasphenol a, Methylene Blue and Cr(VI) Ions: Batch and Column Adsorption Studies. J. Hazard. Mater. 2022, 421, 126804. DOI: 10.1016/j.jhazmat.2021.126804.
  • Ghada, A. M.; Asmaa, S.; Manar, E.; Sayed, A.; Mina, Y. F. D.; Ayman, A. Efficient Removal of Cr(VI) from Aqueous Solutions Usingchitosan/Na-Alginate Bio-Based Nanocomposite Hydrogel. J. Appl. Polym. 2023, 140, 53886.
  • Kang, S. C.; Zhao, Y. L.; Wang, W.; Zhang, T. T.; Chen, T. X.; Yi, H.; Rao, F.; Song, S. X. Removal of Methylene Blue from Water with Montmorillonite Nanosheets/Chitosan Hydrogels as Adsorbent. Appl. Surf. Sci. 2018, 448, 203–211. DOI: 10.1016/j.apsusc.2018.04.037.
  • Tripathy, S.; Sahu, S.; Patel, R. K.; Panda, R. B.; Kar, P. K. Efficient Removal of Cr(VI) by Polyaniline Modified Biochar from Date (Phoenix Dactylifera) Seed. Ground. Sustain. Dev. 2021, 15, 100653. DOI: 10.1016/j.gsd.2021.100653.
  • Wang, Y.; Gong, Y.; Lin, N.; Yu, L.; Du, B.; Zhang, X. Enhanced Removal of Cr(VI) from Aqueous Solution by Stabilized Nanoscale Zero Valent Iron and Copper Bimetal Intercalated Montmorillonite. J. Colloid Interface Sci. 2022, 606, 941–952. DOI: 10.1016/j.jcis.2021.08.075.
  • Zidan, T. A.; Abdelhamid, A. E.; Zaki, E. G. N-Aminorhodanine Modified Chitosan Hydrogel for Antibacterial and Copper IonsRemoval from Aqueous Solutions. Int. J. Biol. Macromol. 2020, 158, 32–42. DOI: 10.1016/j.ijbiomac.2020.04.180.
  • Sahu, S.; Bishoyi, N.; Patel, R. K. Cerium Phosphate Polypyrrole Flower like Nanocomposite: A Recyclable Adsorbent for Removal of Cr(VI) by Adsorption Combined with in-Situ Chemical Reduction. Ind. Eng. Chem. 2021, 99, 55–67. DOI: 10.1016/j.jiec.2021.03.041.
  • Luo, Q. Y.; Huang, X. H.; Luo, Y.; Yuan, H. M.; Ren, T. T.; Li, X. J.; Xu, D.; Guo, X.; Wu, Y. Q. Fluorescent Chitosan-Based Hydrogel Incorporating Titanate and Cellulose Nanofibers Modified with Carbon Dots for Adsorption and Detection of Cr(VI). J. Chem. Eng. 2021, 407, 127050. DOI: 10.1016/j.cej.2020.127050.
  • Zhang, Y.; Cao, Z.; Luo, Z. L.; Li, W. J.; Tao, Fu, T.; Qiu, W.; Lai, Z. R.; Cheng, J. F.; Yang, H. C.; Ma, W. Z.; et al. Facile Fabrication of Underwater Superoleophobicmembrane Based on Polyacrylamide/Chitosan Hydrogelmodified Metal Mesh for Oil–Water Separation. J. Polym. 2022, 60, 2329–2342. DOI: 10.1002/pol.20210923.
  • He, W.; Cao, J.; Guo, F.; Guo, Z.; Zhou, P.; Wang, R.; Liang, S.; Pang, Q.; Wei, B.; Jiao, Y.; et al. Nanostructured Carboxylated-Wood Aerogel Membrane for High-Efficiency Removal of Cu (II) Ions from Wastewater. J. Chem. Eng. 2023, 468, 143747. DOI: 10.1016/j.cej.2023.143747.
  • Liu, X. P.; Wu, H.; Pan, P.; Wang, M. M.; Zhang, W. J.; Hu, C.; Lu, S. Z.; Li, M. Z.; Liu, Y. Preparation of Thermosensitive Hydroxybutyl Chitosan/SilkFibroin Hybrid Hydrogels Macromol. Mater. Eng. 2022, 307, 2200415.
  • Jhonnys, D.; Guerrero, F. A.; Marchesini, M. A.; Ulla, L. B. G. Effect of Biocomposite Production Factors on the Development of an Eco-Friendly Chitosan/Alginate-Based Adsorbent with Enhanced Copper Removal Efficiency. Int. J. Biol. Macromol. 2023, 253, 126416. DOI: 10.1016/j.ijbiomac.2023.126416.
  • Ferfera-Harrar, H.; Berdous, D.; Benhalima, T. Hydrogel Nanocomposites Based on Chitosan-g-Polyacrylamide and Silver Nanoparticles Synthesized Using Curcuma Longa for Antibacterial Applications. Polym. Bull. 2018, 75, 2819–2846. DOI: 10.1007/s00289-017-2183-z.
  • Liu, L.; Li, L.; Qing, Y.; Yan, N.; Wu, Y. Q.; Lia, X. J.; Tian, C. H. Mechanically Strong and Thermosensitive Hydrogels Reinforced with Cellulose Nanofibrils. Polymer Chem. Wastry 2016, 00, 1–3, 1.
  • Huang, F.; Tian, X.; Wei, W.; Xu, X. L.; Li, J. Y.; Guo, Y. F.; Zhou, Z. W. Wheat Straw-Core Hydrogel Spheres with Polypyrrole Nanotubes for the Removal of Organic Dyes. J. Cleaner Prod. 2022, 344, 131100. DOI: 10.1016/j.jclepro.2022.131100.
  • Shan, S.; Sun, X. F.; Xie, Y. Y.; Li, W. B.; Ji, T. Z. High-Performance Hydrogel Adsorbent Based on Cellulose, Hemicellulose, and Lignin for Copper(II) Ion Removal. Polymers. (Basel) 2021, 13, 3063. DOI: 10.3390/polym13183063.
  • Wang, X.; Jiang, S.; Cui, S.; Tang, Y.; Pei, Z.; Duan, H. Magnetic-Controlled Aerogels from Carboxylated Cellulose and MnFe2O4 as a Novel Adsorbent for Removal of Cu(II). Cellulose 2019, 26, 5051–5063. DOI: 10.1007/s10570-019-02444-7.
  • Zhang, H.; Zhang, X.; Qiao, S. P.; Wang, B.; Zeng, X.; Ren, B.; Yang, X. D. Modified Corn Stalk Carboxymethyl Cellulose, Acrylic Acid and SBA-15 Based Composite Hydrogel Used for Agriculturalwater Retention. J. Appl. Polym. 2023, 141, 54613.
  • Punyarat, J. C.; Pranee, P. J. A Simple Method for Extraction of Cellulosenanocrystals from Green Luffa Cylindricabiomaterial and Their Characteristics. Polym. Int. 2023, 72, 243–251.
  • Wang, X. P.; Zheng, Y. X.; Zong, L.; Zhang, C. X. Hydrogel-Biochar Composites for Removal of Methyleneblue: Adsorption Performance, Characterization, Andadsorption Isotherm, Kinetics, Thermodynamics Analysis. J. Appl. Polym. 2022, 139, 53219.
  • Lei, C. Y.; Xiao, Q.; Zhou, S. S.; Zu, W. H.; Li, J. L.; Zeng, J.; Yan, L. L.; Huang, Y. W.; Wang, B. Synthesis and Characterization of Magnetic Carboxymethylchitosan-Poly(Acrylic Acid-Itaconic Acid) Hydrogel for Theefficient Adsorption of Malachite Green. J. Appl. Polym. 2022, 139, 52347.
  • JohnRey, A. R.; SayKee, O. Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogelby C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of Its Cu(II) Uptake. Processes 2023, 11, 354.
  • Tohamy, H. S.; El-Sakhawy, M.; Strachota, B.; Strachota, A.; Pavlova, E.; Mares, B. S.; Kamel, S. Temperature- and pH-Responsive Super-Absorbent Hydrogel Based on Grafted Cellulose and Capable of Heavy MetalRemoval from Aqueous Solutions. Gels 2023, 9, 296. DOI: 10.3390/gels9040296.
  • Liu, J.; Li, Q.; Su, Y.; Yue, Q.; Gao, B. Characterization and Swelling-Deswelling Properties of Wheat Strawcellulose Based semi-IPNs Hydrogel. Carbohydr. Polym. 2014, 107, 232–240. DOI: 10.1016/j.carbpol.2014.02.073.
  • Gou, G.; Huang, F.; Jiang, M.; Li, J.; Zhou, Z. Hierarchical Porous Carbon Electrode Materials for Supercapacitor Developed from Wheat Straw Cellulosic Foam. Renew. Energy 2020, 149, 208–216. DOI: 10.1016/j.renene.2019.11.150.
  • He, J.; Strezov, V.; Kumar, R.; Weldekidan, H.; Jahan, S.; Dastjerdi, B. H.; Zhou, X.; Kan, T. Pyrolyswas of Heavy Metal Contaminated Avicennia Marina Biomass from Phytoremediation: Characterwasation of Biomass and Pyrolyswas Products. J. Clean. Prod. 2019, 234, 1235–1245. DOI: 10.1016/j.jclepro.2019.06.285.
  • Cao, Y.; Chen, S. S.; Zhang, S.; Ok, Y. S.; Matsagar, B. M.; Wu, K. C.-W.; Tsang, D. C. W. Advances in Lignin Valorization towards Bio-Based Chemicals and Fuels: Lignin Biorefinery. Bioresour. Technol. 2019, 291, 121878. DOI: 10.1016/j.biortech.2019.121878.
  • Geng, Z.; Zhang, H.; Xiong, Q.; Zhang, Y.; Zhao, H.; Wang, G. A Fluorescent Chitosan Hydrogel Detection Platform for the Sensitive and Selective Determination of Trace Mercury(II) in Water. J. Mater. Chem. A 2015, 3, 19455–19460. DOI: 10.1039/C5TA05610A.
  • Schott, H. Swelling Kinetics of Polymers. J. Macromol. Sci. 1992, 31, 1–9. DOI: 10.1080/00222349208215453.
  • Wang, Y. X.; Yang, X. Y.; Li, L. Formation of pH-Responsive Hydrogel Beads and Their Gel Properties: Soybean Protein Nanofibers and Sodium Alginate. Carbohydr. Polym. 2024, 329, 121748. DOI: 10.1016/j.carbpol.2023.121748.
  • Jaffar, I.; Arshad, A.; Muhammad, A. H.; Muhammad, T. H.; Muhammad, N. H.; Syed, Z. H.Citric Acid Cross-Linking of a Hydrogel from Aloe Vera (Aloe Barbadensis M.). Engenders a pH-Responsive, Superporous, and Smart Material for Drug Delivery. RSC Adv. 2024, 14, 8018.
  • Jingwei, G.; Leilei, H.; Yern, C. C.; Kuan, Y. C.; Nguyen, D. H.; Cheng, H. C. A Review of Recent Advances of Cellulose-Based Intelligent-Responsive Hydrogels as Vehicles for Controllable Drug Delivery System. Int. J. Biol. Macromol. 2024, 264, 130525.
  • Chen, W. S.; Yu, H. P.; Li, Q.; Liu, Y. X.; Li, J. Ultralight and Highly Flexible Aerogels with Long Cellulose I Nanofibers. Soft Matter 2011, 7, 10360–10368. DOI: 10.1039/c1sm06179h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.