417
Views
5
CrossRef citations to date
0
Altmetric
Articles

IrIII as a strategy for preorganisation in H-bonded motifs

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-12 | Received 25 Jun 2019, Accepted 23 Jul 2019, Published online: 07 Aug 2019

References

  • Eberhardt, E.S.; Raines, R.T. Amide-Amide and Amide-Water Hydrogen Bonds: Implications for Protein Folding and Stability. J. Am. Chem. Soc. 1994, 116, 2149–2150. DOI: 10.1021/ja00084a067
  • Fernández, A.; Sosnick, T.R.; Colubri, A. Dynamics of Hydrogen Bond Desolvation in Protein Folding. J. Mol. Biol. 2002, 321, 659–675. DOI: 10.1016/S0022-2836(02)00679-4
  • Steiner, T.;. The Hydrogen Bond in the Solid State. Angew. Chemie Int. Ed. 2002, 41, 48–76. DOI: 10.1002/1521-3773(20020104)41
  • Jeffrey, G.A.;. An Introduction to Hydrogen Bonding; Oxford university press: New York, 1997. ISBN: 0195095499, 9780195095494
  • Sijbesma, R.P.; Meijer, E.W. Quadruple Hydrogen Bonded Systems. Chem. Commun. 2003, 1, 5–16. DOI: 10.1039/B205873C
  • Bell, T.W.; Hou, Z. A Hydrogen-Bonding Receptor that Binds Urea with High Affinity. Angew. Chemie Int. Ed. English. 1997, 36, 1536–1538. doi:10.1002/anie.199715361
  • Vijayakumar, V.N.; Mohan, M.L.N.M. Synthesis and Characterization of Double Hydrogen Bonded Ferroelectric Liquid Crystals Exhibiting Reentrant Smectic Ordering. Ferroelectrics. 2009, 392, 81–97. DOI: 10.1080/00150190903412556
  • Pihko, P.M.;. Activation of Carbonyl Compounds by Double Hydrogen Bonding: An Emerging Tool in Asymmetric Catalysis. Angew. Chemie Int. Ed. 2004, 43, 2062–2064. DOI: 10.1002/anie.200301732
  • Burrows, A.D.; Chan, C.-W.; Chowdhry, M.M.; McGrady, J.E.; Mingos, D.M.P. Multidimensional Crystal Engineering of Bifunctional Metal Complexes Containing Complementary Triple Hydrogen Bonds. Chem. Soc. Rev. 1995, 24, 329–339. DOI: 10.1039/CS9952400329
  • Hoeben, F.J.M.; Pouderoijen, M.J.; Schenning, A.P.H.J.; Meijer, E.W. Energy Transfer in Chiral Co-Assemblies of Triple Hydrogen-Bonded Oligo(p-Phenylene Vinylene)s and Porphyrin. Org. Biomol. Chem. 2006, 4, 4460–4462. DOI: 10.1039/B612790H
  • Djurdjevic, S.; Leigh, D.A.; McNab, H.; Parsons, S.; Teobaldi, G.; Zerbetto, F. Extremely Strong and Readily Accessible AAA−DDD Triple Hydrogen Bond Complexes. J. Am. Chem. Soc. 2007, 129, 476–477. DOI: 10.1021/ja067410t
  • Blight, B.A.; Camara-Campos, A.; Djurdjevic, S.; Kaller, M.; Leigh, D.A.; McMillan, F.M.; McNab, H.; Slawin, A.M.Z. AAA−DDD Triple Hydrogen Bond Complexes. J. Am. Chem. Soc. 2009, 131, 14116–14122. DOI: 10.1021/ja906061v
  • Blight, B.A.; Hunter, C.A.; Leigh, D.A.; McNab, H.; Thomson, P.I.T. An AAAA–DDDD Quadruple Hydrogen-Bond Array. Nat. Chem. 2011, 3, 244–248. DOI: 10.1038/nchem.987
  • Han, Y.-F.; Chen, W.-Q.; Wang, H.-B.; Yuan, Y.-X.; Wu, -N.-N.; Song, X.-Z.; Yang, L. An AAA–DDD Triply Hydrogen-Bonded Complex Easily Accessible for Supramolecular Polymers. Chem. A Eur. J. 2014, 20, 16980–16986. DOI: 10.1002/chem.201404996
  • Sartorius, J.; Schneider, H.-J. A General Scheme Based on Empirical Increments for the Prediction of Hydrogen-Bond Associations of Nucleobases and of Synthetic Host–Guest Complexes. Chem. A Eur. J. 1996, 2, 1446–1452. DOI: 10.1002/chem.19960021118
  • Jorgensen, W.L.; Pranata, J. Importance of Secondary Interactions in Triply Hydrogen Bonded Complexes: Guanine-Cytosine Vs Uracil-2, 6-diaminopyridine. J. Am. Chem. Soc. 1990, 112, 2008–2010. doi:10.1021/ja00161a061
  • Pranata, J.; Wierschke, S.G.; Jorgensen, W.L. OPLS Potential Functions for Nucleotide Bases. Relative Association Constants of Hydrogen-Bonded Base Pairs in Chloroform. J. Am. Chem. Soc. 1991, 113, 2810–2819. DOI: 10.1021/ja00008a002
  • Murray, T.J.; Zimmerman, S.C. New Triply Hydrogen Bonded Complexes with Highly Variable Stabilities. J. Am. Chem. Soc. 1992, 114(10), 4010–4011. DOI: 10.1021/ja00036a079
  • Zimmerman, S.C.; Murray, T.J. Hydrogen Bonded Complexes with the AA·DD, AA·DDD, and AAA·DD Motifs: The Role of Three Centered (bifurcated) Hydrogen Bonding. Tetrahedron Lett. 1994, 35, 4077–4080. DOI: 10.1016/S0040-4039(00)73116-9
  • Papmeyer, M.; Vuilleumier, C.A.; Pavan, G.M.; Zhurov, K.O.; Severin, K. Molecularly Defined Nanostructures Based on a Novel AAA–DDD Triple Hydrogen-Bonding Motif. Angew. Chemie Int. Ed. 1685–1689, 2016 (55), DOI: 10.1002/anie.201510423
  • Han, Y.-F.; Chen, W.-Q.; Wang, H.-B.; Yuan, Y.-X.; Wu, -N.-N.; Song, X.-Z.; Yang, L. Chem. A Eur. J. 2014, 20, 16980–16986. doi:10.1002/chem.201404996
  • Mendez, I.J.L.; Wang, H.-B.; Yuan, Y.-X.; Wisner, J.A. Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes. Macromol. Rapid Commun. 2018, 39, 1700619. DOI: 10.1002/marc.201700619
  • Caltagirone, C.; Hiscock, J.R.; Hursthouse, M.B.; Light, M.E.; Gale, P.A. 1,3-diindolylureas and 1,3-diindolylthioureas: Anion Complexation Studies in Solution and the Solid State. Chem. A Eur. J. 2008, 14, 10236–10243. DOI: 10.1002/chem.200801639
  • Murali, M.G.; Vishnumurthy, K.A.; Seethamraju, S.; Ramamurthy, P.C. Colorimetric Anion Sensor Based on Receptor Having Indole- and Thiourea-Binding Sites. RSC Adv. 2014, 4, 20592–20598. DOI: 10.1039/C4RA01555J
  • Emami Khansari, M.; Johnson, C.R.; Basaran, I.; Nafis, A.; Wang, J.; Leszczynski, J.; Hossain, M.A. Synthesis and Anion Binding Studies of Tris(3-Aminopropyl)Amine-Based Tripodal Urea and Thiourea Receptors: Proton Transfer-Induced Selectivity for Hydrogen Sulfate over Sulfate. RSC Adv. 2015, 5, 17606–17614. DOI: 10.1039/C5RA01315A
  • Jiménez Blanco, J.L.; Bootello, P.; Benito, J.M.; Ortiz Mellet, C.; García Fernández, J.M. Urea-, Thiourea-, and Guanidine-Linked Glycooligomers as Phosphate Binders in Water. J. Org. Chem. 2006, 71, 5136–5143. DOI: 10.1021/jo060360q
  • Chung, Y.K.; Ha, S.; Woo, T.G.; Kim, Y.D.; Song, C.; Kim, S.K. Binding Thiourea Derivatives with Dimethyl Methylphosphonate for Sensing Nerve Agents. RSC Adv. 2019, 9, 10693–10701. DOI: 10.1039/C9RA00314B
  • Wenzel, M.; Light, M.E.; Davis, A.P.; Gale, P.A. Thiourea Isosteres as Anion Receptors and Transmembrane Transporters. Chem. Commun. 2011, 47, 7641–7643. DOI: 10.1039/C1CC12439K
  • Kado, S.; Otani, H.; Nakahara, Y.; Kimura, K. Highly Selective Recognition of Acetate and Bicarbonate by Thiourea-Functionalised Inverse Opal Hydrogel in Aqueous Solution. Chem. Commun. 2013, 49, 886–888. DOI: 10.1039/C2CC38052H
  • Wang, L.; Wu, Y.; Shan, -G.-G.; Geng, Y.; Zhang, J.-Z.; Wang, D.-M.; Yang, G.-C.; Su, Z.-M. The Influence of the Diphenylphosphoryl Moiety on the Phosphorescent Properties of Heteroleptic Iridium (III) Complexes and the OLED Performance: A Theoretical Study. J. Mater. Chem. C. 2014, 2, 2859–2868. DOI: 10.1039/C3TC31831A
  • Henwood, A.F.; Antón-García, D.; Morin, M.; Rota Martir, D.; Cordes, D.B.; Casey, C.; Slawin, A.M.Z.; Lebl, T.; Bühl, M.; Conjugated, Z.-C.E. Rigidified Bibenzimidazole Ancillary Ligands for Enhanced Photoluminescence Quantum Yields of Orange/Red-Emitting Iridium(III) Complexes. Dalt. Trans. 2019, 48, 9639–9653. doi:10.1039/C9DT00423H
  • Kessler, F.; Watanabe, Y.; Sasabe, H.; Katagiri, H.; Nazeeruddin, M.K.; Grätzel, M.; Kido, J. High-Performance Pure Blue Phosphorescent OLED Using a Novel Bis-Heteroleptic Iridium(III) Complex with Fluorinated Bipyridyl Ligands. J. Mater. Chem. C. 2013, 1, 1070–1075. DOI: 10.1039/C2TC00836J
  • Chau, N.-Y.; Ho, P.-Y.; Ho, C.-L.; Ma, D.; Wong, W.-Y. Color-Tunable Thiazole-Based Iridium (III) Complexes: Synthesis, Characterization and Their OLED Applications. J. Organomet. Chem. 2017, 829, 92–100. DOI: 10.1016/j.jorganchem.2016.11.018
  • Galán, L.A.; Cordes, D.B.; Slawin, A.M.Z.; Jacquemin, D.; Ogden, M.I.; Massi, M.; Zysman-Colman, E. Analyzing the Relation between Structure and Aggregation Induced Emission (AIE) Properties of Iridium(III) Complexes through Modification of Non-Chromophoric Ancillary Ligands. Eur. J. Inorg. Chem. 2019, 152–163. doi:10.1002/ejic.201801118
  • Su, N.; Yang, H.; Shen, C.-Z.; Yan, Z.-P.; Chen, Z.-X.; Zheng, Y.-X. Rapid Room Temperature Synthesis of Red Iridium (III) Complexes with Ir-S-P-S Structures for Efficient OLEDs. J. Mater. Chem. C. 2019, 7, 6975–6977. DOI: 10.1039/C9TC01564G
  • Lu, G.-Z.; Tu, Z.-L.; Liu, L.; Zhang, -W.-W.; Zheng, Y.-X. Fast Synthesis of Iridium (III) Complexes with Sulfur Containing Ancillary Ligand for High-Performance Green OLEDs with EQE over 31%. J. Mater. Chem. C. 2019, 7, 7273–7278. DOI: 10.1039/C9TC01397K
  • Su, N.; Yang, H.; Zheng, Y.-X.; Chen, Z.-X. Sulfur Atom Contained Ligands Induced Rapid Room Temperature Synthesis of Red Iridium (III) Complexes with Ir-S-P-S Structures for OLEDs. New J. Chem. 2019, 43, 8722–8727. DOI: 10.1039/C9NJ01599J
  • Sheldrick, G.M.;. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8. DOI: 10.1107/S2053229614024218.
  • Sheldrick, G.M.;. SHELXT: Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3−8. DOI: 10.1107/S2053273314026370.
  • Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339−341. DOI: 10.1107/S0021889808042726
  • Supramolecular BindFit. www.supramolecular.org (accessed May 15, 2019).
  • Nonoyama, M.;. Benzo[h]quinolin-10-yl-N Iridium (III) Complexes. Bull. Chem. Soc. Jpn. 1974, 47, 767−768. DOI: 10.1246/bcsj.47.767.
  • Vig, R.; Mao, C.; Venkatachalam, T.K.; Tuel-Ahlgren, L.; Sudbeck, E.A.; Uckun, F.M. Rational Design and Synthesis of Phenethyl-5-Bromopyridyl Thiourea Derivatives as Potent NonNucleoside Inhibitors of HIV Reverse Transcriptase. Bioorg. Med. Chem. 1998, 6, 1789−1797
  • Balónová, B.; Martir, D.R.; Clark, E.R.; Shepherd, H.J.; Zysman-Colman, E.; Blight, B.A. Influencing the Optoelectronic Properties of a Heteroleptic Iridium Complex by Second-Sphere H-Bonding Interactions. Inorg. Chem. 2018, 57, 8581–8587. DOI: 10.1021/acs.inorgchem.8b01326
  • Pelphrey, P.M.; Popov, V.M.; Joska, T.M.; Beierlein, J.M.; Bolstad, E.S.D.; Fillingham, Y.A.; Wright, D.L.; Anderson, A.C. Highly Efficient Ligands for Dihydrofolate Reductase from Cryptosporidium Hominis and Toxoplasma Gondii Inspired by Structural Analysis. J. Med. Chem. 2007, 50, 940−950. DOI: 10.1021/jm061027h
  • Rowland, R.S.; Taylor, R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from Van Der Waals Radii. J. Phys. Chem. 1996, 100, 7384− 7391. DOI: 10.1021/jp953141+
  • Bordwell, F.G.; Algrim, D.J.; Harrelson, J.A. The Relative Ease of Removing a Proton, a Hydrogen Atom, or an Electron from Carboxamides versus Thiocarboxamides. J. Am. Chem. Soc. 1988, 110, 5903–5904. DOI: 10.1021/ja00225a054
  • Sundareswari,M.;Rajagopalan, M.;. Study of the Electronic Structure and Physical Properties of the Iridium Based Intermetallic Compounds under Pressure. Int. J. Mod. Phys. B. 2005, 19, 4587–4604. doi:10.1142/S0217979205032966
  • Ren, X.; Giesen, D.J.; Rajeswaran, M.; Madaras, M. Synthesis, Characterization, and Physical Properties of Cyclometalated Iridium(III) Complexes with 2-phenylthiophene or 2-phenylfuran Ligands. Organometallics. 2009, 28, 6079–6089. DOI: 10.1021/om9006246
  • Esteruelas, M.A.; Oñate, E.; Palacios, A.U. Selective Synthesis and Photophysical Properties of Phosphorescent Heteroleptic Iridium(III) Complexes with Two Different Bidentate Groups and Two Different Monodentate Ligands. Organometallics. 1743–1755, 2017 (36), DOI: 10.1021/acs.organomet.7b00108
  • Li, G.-N.; Dou, S.-B.; Zheng, T.; Chen, X.-Q.; Yang, X.-H.; Wang, S.; Sun, W.; Chen, G.-Y.; Mo, Z.-R.; Niu, Z.-G. Orange-Red Phosphorescent Iridium(III) Complexes Bearing Bisphosphine Ligands: Synthesis, Photophysical and Electrochemical Properties, and DFT Calculations. Organometallics. 2018, 37, 78–86. DOI: 10.1021/acs.organomet.7b00740
  • Tamura, Y.; Hisamatsu, Y.; Kazama, A.; Yoza, K.; Sato, K.; Kuroda, R.; Aoki, S. Stereospecific Synthesis of Tris-Heteroleptic Tris-Cyclometalated Iridium(III) Complexes via Different Heteroleptic Halogen-Bridged Iridium(III) Dimers and Their Photophysical Properties. Inorg. Chem. 2018, 57, 4571–4589. DOI: 10.1021/acs.inorgchem.8b00323
  • Li, Q.; Zhang, X.; Cao, Y.; Shi, C.; Tao, P.; Zhao, Q.; Yuan, A. An Oxygen-Bridged Triarylamine Polycyclic Unit Based Tris-Cyclometalated Heteroleptic Iridium(III) Complex: Correlation between the Structure and Photophysical Properties. Dalt. Trans. 2019, 48, 4596–4601. doi:10.1039/C9DT00344D
  • Kong, D.; Tian, M.; Guo, L.; Liu, X.; Zhang, S.; Song, Y.; Meng, X.; Wu, S.; Zhang, L.; Liu, Z. Novel Iridium(III) Iminopyridine Complexes: Synthetic, Catalytic, and in Vitro Anticancer Activity Studies. JBIC. J. Biol. Inorg. Chem. 2018, 23, 819–832. doi:10.1007/s00775-018-1578-0
  • Chen, W.; Liu, F.-X.; Gong, W.; Zhou, Z.; Gao, H.; Shi, J.; Wu, B.; Hydroxyl Group-Prompted, Y.W. Iridium(III)-Catalyzed Regioselective C−H Annulation of N-Phenoxyacetamides with Propargyl Alcohols. Adv. Synth. Catal. 2018, 360, 2470–2475. DOI: 10.1002/adsc.201800322
  • Zhong, R.-L.; Sakaki, S. Sp3 C–H Borylation Catalyzed by Iridium(III) Triboryl Complex: Comprehensive Theoretical Study of Reactivity, Regioselectivity, and Prediction of Excellent Ligand. J. Am. Chem. Soc. 2019, 141, 9854–9866. DOI: 10.1021/jacs.9b01767
  • Yang, C.-H.; Cheng, Y.-M.; Chi, Y.; Hsu, C.-J.; Fang, F.-C.; Wong, K.-T.; Chou, P.-T.; Chang, C.-H.; Tsai, M.-H.; Wu, -C.-C. Blue-Emitting Heteroleptic Iridium(III) Complexes Suitable for High-Efficiency Phosphorescent OLEDs. Angew. Chemie Int. Ed. 2007, 46, 2418–2421. DOI: 10.1002/anie.200604733
  • Kim, J.-B.; Han, S.-H.; Yang, K.; Kwon, S.-K.; Kim, -J.-J.; Kim, Y.-H. Highly Efficient Deep-Blue Phosphorescence from Heptafluoropropyl-Substituted Iridium Complexes. Chem. Commun. 2015, 51, 58–61. DOI: 10.1039/C4CC07768G
  • Henwood, A.F.; Bansal, A.K.; Cordes, D.B.; Slawin, A.M.Z.; Samuel, I.D.W.; Zysman-Colman, E. Solubilised Bright Blue-Emitting Iridium Complexes for Solution Processed OLEDs. J. Mater. Chem. C. 2016, 4, 3726–3737. DOI: 10.1039/C6TC00151C
  • Li, X.; Zhang, J.; Zhao, Z.; Wang, L.; Yang, H.; Chang, Q.; Jiang, N.; Liu, Z.; Bian, Z.; Liu, W.; Lu, Z.; Huang, C. Deep Blue Phosphorescent Organic Light-Emitting Diodes with CIEy Value of 0.11 And External Quantum Efficiency up to 22.5%. Adv. Mater. 2018, 30, 1705005. DOI: 10.1002/adma.201705005
  • Du, M.; Wang, Y.; Wang, J.; Chen, S.; Wang, Z.; Wang, S.; Bai, F.; Liu, Y.; Wang, Y. Novel Sky Blue Heteroleptic Iridium(III) Complexes with Finely-Optimized Emission Spectra for Highly Efficient Organic Light-Emitting Diodes. J. Mater. Chem. C. 2019, 7, 5579–5583. DOI: 10.1039/C9TC00918C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.