739
Views
24
CrossRef citations to date
0
Altmetric
Articles

Evaluating hydrogen-bond propensity, hydrogen-bond coordination and hydrogen-bond energy as tools for predicting the outcome of attempted co-crystallisations

ORCID Icon & ORCID Icon
Pages 81-90 | Received 12 Oct 2019, Accepted 11 Nov 2019, Published online: 21 Nov 2019

References

  • Berger, J.; Dunn, J.D.; Johnson, M.M.; Karst, K.R.; Shear, W.C., How Drug Life-Cycle Management Patent Strategies May Impact Formulary Management. Am. J. Manag. Care. 2016, 22(16 Suppl), S487–S495.
  • Aakeröy, C. Is There Any Point in Making Co-Crystals? Acta Cryst. B. 2015, 71(4), 387–391. DOI: 10.1107/S2052520615010872
  • Aakeröy, C.B.; Wijethunga, T.K.; Desper, J. Molecular Electrostatic Potential Dependent Selectivity of Hydrogen Bonding. New J. Chem. 2015, 39(2), 822–828. DOI: 10.1039/C4NJ01324G
  • Bedeković, N.; Stilinović, V.; Piteša, T. Aromatic versus Aliphatic Carboxyl Group as a Hydrogen Bond Donor in Salts and Cocrystals of an Asymmetric Diacid and Pyridine Derivatives. Cryst. Growth Des. 2017, 17(11), 5732–5743. DOI: 10.1021/acs.cgd.7b00746
  • Draguta, S.; Fonari, M.S.; Bejagam, S.N.; Storms, K.; Lindline, J.; Timofeeva, T.V. Structural Similarities and Diversity in a Series of Crystalline Solids Composed of 2-aminopyridines and Glutaric Acid. Struct. Chem. 2016, 27(4), 1303–1315. DOI: 10.1007/s11224-016-0781-2
  • Aakeröy, B.C.; Wijethunga, T.K.; Benton, J.; Desper, J. Stabilizing Volatile Liquid Chemicals Using Co-Crystallization. Chem. Commun. 2015, 51(12), 2425–2428. DOI: 10.1039/C4CC09650A
  • Grecu, T.; Hunter, C.A.; Gardiner, E.J.; McCabe, J.F. Validation of a Computational Cocrystal Prediction Tool: Comparison of Virtual and Experimental Cocrystal Screening Results. Cryst. Growth Des. 2014, 14(1), 165–171. DOI: 10.1021/cg401339v
  • Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J.H. Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol. Rev. 2013, 65(1), 315–499. DOI: 10.1124/pr.112.005660
  • Shan, N.; Zaworotko, M.J. The Role of Cocrystals in Pharmaceutical Science. Drug Discovery Today. 2008, 13(9), 440–446. DOI: 10.1016/j.drudis.2008.03.004
  • Basavoju, S.; Boström, D.; Velaga, S.P. Indomethacin–Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization. Pharm. Res. 2008, 25(3), 530–541. DOI: 10.1007/s11095-007-9394-1
  • Aakeröy, C.B.; Champness, N.R.; Janiak, C. Recent Advances in Crystal Engineering. Cryst. Eng. Comm. 2010, 12(1), 22–43. DOI: 10.1039/B919819A
  • Gadade, D.D.; Pekamwar, S.S. Pharmaceutical Cocrystals: Regulatory and Strategic Aspects, Design and Development. Adv. Pharm. Bull. 2016, 6(4), 479–494. DOI: 10.15171/apb.2016.062
  • Li, S.; Yu, T.; Tian, Y.; McCoy, C.P.; Jones, D.S.; Andrews, G.P. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Feasibility Studies and Physicochemical Characterization. Mol. Pharmaceutics. 2016, 13(9), 3054–3068. DOI: 10.1021/acs.molpharmaceut.6b00134
  • Surov, A.O.; Voronin, A.P.; Manin, A.N.; Manin, N.G.; Kuzmina, L.G.; Churakov, A.V.; Perlovich, G.L. Pharmaceutical Cocrystals of Diflunisal and Diclofenac with Theophylline. Mol. Pharmaceutics. 2014, 11(10), 3707–3715. DOI: 10.1021/mp5004652
  • Babu, N.J.; Nangia, A. Solubility Advantage of Amorphous Drugs and Pharmaceutical Cocrystals. Cryst. Growth Des. 2011, 11(7), 2662–2679. DOI: 10.1021/cg200492w
  • Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9(3), 1621–1637. DOI: 10.1021/cg800764n
  • Cherukuvada, S.; Kaur, R.; Row, T.N.G. Co-Crystallization and Small Molecule Crystal Form Diversity: From Pharmaceutical to Materials Applications. CrystEngComm. 2016, 18(44), 8528–8555. DOI: 10.1039/C6CE01835A
  • Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111(11), 6810–6918. DOI: 10.1021/cr200077m
  • Aakeröy, C.B.; Chopade, P.D.; Desper, J. Avoiding “Synthon crossover” in Crystal Engineering with Halogen Bonds and Hydrogen Bonds. Cryst. Growth Des. 2011, 11(12), 5333–5336. DOI: 10.1021/cg2009013
  • Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.;; et al. Defining the Hydrogen Bond: An Account (IUPAC Technical report). Pure Appl. Chem. 2011, 83 (8), 1619–1636. DOI: 10.1351/PAC-REP-10-01-01
  • Buckingham, A.D.; Del Bene, J.E.; McDowell, S.A.C. The Hydrogen Bond. Chem. Phys. Lett. 2008, 463(1), 1–10. DOI: 10.1016/j.cplett.2008.06.060
  • Lehn, J.-M. Toward Self-Organization and Complex Matter. Science. 2002, 295(5564), 2400–2403. DOI: 10.1126/science.1071063
  • Moulton, B.; Zaworotko, M.J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev. 2001, 101(6), 1629–1658. DOI: 10.1021/cr9900432
  • Bosch, E. Chain-Link Hydrogen-Bonded Capsules. CrystEngComm. 2007, 9(3), 191–198. DOI: 10.1039/B615899D
  • Aakeröy, C.B.; Salmon, D.J.; Smith, M.M.; Desper, J. Cyanophenyloximes: Reliable and Versatile Tools for Hydrogen-Bond Directed Supramolecular Synthesis of Cocrystals. Cryst. Growth Des. 2006, 6(4), 1033–1042. DOI: 10.1021/cg0600492
  • Aakeröy, C.B.; Desper, J.; Leonard, B.; Urbina, J.F. Toward High-Yielding Supramolecular Synthesis: Directed Assembly of Ditopic Imidazoles/Benzimidazoles and Dicarboxylic Acids into Cocrystals via Selective O−H···N Hydrogen Bonds. Cryst. Growth Des. 2005, 5(3), 865–873. DOI: 10.1021/cg049682i
  • Perlovich, G.L. Two-Component Molecular Crystals: Relationship between the Entropy Term and the Molecular Volume of Co-Crystal Formation. CrystEngComm. 2018, 20(26), 3634–3637. DOI: 10.1039/C8CE00592C
  • McKenzie, J.; Feeder, N.; Hunter, C.A. H-Bond Competition Experiments in Solution and the Solid State. CrystEngComm. 2016, 18(3), 394–397. DOI: 10.1039/C5CE02223A
  • Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Delivery Rev. 2007, 59(7), 617–630. DOI: 10.1016/j.addr.2007.05.011
  • Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen Solubility Parameter as a Tool to Predict Cocrystal Formation. Int. J. Pharm. 2011, 407(1), 63–71. DOI: 10.1016/j.ijpharm.2011.01.030
  • Issa, N.; Karamertzanis, P.G.; Welch, G.W.A.; Price, S.L. Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? I. Comparison of Lattice Energies. Cryst. Growth Des. 2009, 9(1), 442–453. DOI: 10.1021/cg800685z
  • Galek, P.T.A.; Chisholm, J.A.; Pidcock, E.; Wood, P.A. Hydrogen-Bond Coordination in Organic Crystal Structures: Statistics, Predictions and Applications. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2014, 70(1), 91–105. DOI: 10.1107/S2052520613033003
  • Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.V.D.; Wood, P.A. Mercury CSD 2.0 – New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Cryst. 2008, 41(2), 466–470. DOI: 10.1107/S0021889807067908
  • Fábián, L. Cambridge Structural Database Analysis of Molecular Complementarity in Cocrystals. Cryst. Growth Des. 2009, 9(3), 1436–1443. DOI: 10.1021/cg800861m
  • Musumeci, D.; Hunter, C.A.; Prohens, R.; Scuderi, S.; McCabe, J.F. Virtual Cocrystal Screening. Chem. Sci. 2011, 2(5), 883. DOI: 10.1039/c0sc00555j
  • Wood, P.A.; Feeder, N.; Furlow, M.; Galek, P.T.A.; Groom, C.R.; Pidcock, E. Knowledge-Based Approaches to Co-Crystal Design. CrystEngComm. 2014, 16(26), 5839. DOI: 10.1039/c4ce00316k
  • Sandhu, B.; McLean, A.; Sinha, A.S.; Desper, J.; Sarjeant, A.A.; Vyas, S.; Reutzel-Edens, S.M.; Aakeröy, C.B. Evaluating Competing Intermolecular Interactions through Molecular Electrostatic Potentials and Hydrogen-Bond Propensities. Cryst. Growth Des. 2018, 18(1), 466–478. DOI: 10.1021/acs.cgd.7b01458
  • Galek, P.T.A.; Allen, F.H.; Fábián, L.; Feeder, N. Knowledge-Based H-Bond Prediction to Aid Experimental Polymorph Screening. CrystEngComm. 2009, 11(12), 2634. DOI: 10.1039/b910882c
  • Bučar, D.-K.; Lancaster, R.W.; Bernstein, J. Disappearing Polymorphs Revisited. Angew. Chem. Int. Ed. 2015, 54(24), 6972–6993. DOI: 10.1002/anie.201410356
  • Corpinot, M.K.; Stratford, S.A.; Arhangelskis, M.; Anka-Lufford, J.; Halasz, I.; Judaš, N.; Jones, W.; Bučar, D.-K. On the Predictability of Supramolecular Interactions in Molecular Cocrystals – The View from the Bench. CrystEngComm. 2016, 18(29), 5434–5439. DOI: 10.1039/C6CE00293E
  • Sarkar, N.; Sinha, A.S.; Aakeröy, C.B. Systematic Investigation of Hydrogen-Bond Propensities for Informing Co-Crystal Design and Assembly. Cryst. Eng. Comm. 2019, 21, 6048–6055. DOI: 10.1039/C9CE01196J
  • Delori, A.; Galek, P.T.A.; Pidcock, E.; Quantifying Homo-, J.W. Heteromolecular Hydrogen Bonds as a Guide for Adduct Formation. Chem. – Eur. J. 2012, 18(22), 6835–6846. DOI: 10.1002/chem.201103129
  • Delori, A.; Galek, P.T.A.; Pidcock, E.; Patni, M.; Jones, W. Knowledge-Based Hydrogen Bond Prediction and the Synthesis of Salts and Cocrystals of the Anti-Malarial Drug Pyrimethamine with Various Drug and GRAS Molecules. CrystEngComm. 2013, 15(15), 2916. DOI: 10.1039/c3ce26765b
  • Hunter, C.A. Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox. Angew. Chem. Int. Ed. 2004, 43(40), 5310–5324. DOI: 10.1002/anie.200301739
  • Nalte, Y.K.; Arsul, V.A.; Shep, S.G.; Bothara, D.S.B. Solubility Enhancement of Nevirapine by Cocrystallisation Technique. J. Pharm. Res. 2015, 9(8), 556–561.
  • Aakeröy, C.B.; Grommet, A.B.; Desper, J. Co-Crystal Screening of Diclofenac. Pharmaceutics. 2011, 3(3), 601–614. DOI: 10.3390/pharmaceutics3030601
  • Mapp, L.K.; Coles, S.J.; Aitipamula, S. Design of Cocrystals for Molecules with Limited Hydrogen Bonding Functionalities: Propyphenazone as a Model System. Cryst. Growth Des. 2017, 17(1), 163–174. DOI: 10.1021/acs.cgd.6b01399
  • Vologzhanina, A.V.; Sokolov, A.V.; Purygin, P.P.; Zolotarev, P.N.; Blatov, V.A. Knowledge-Based Approaches to H-Bonding Patterns in Heterocycle-1-Carbohydrazoneamides. Cryst. Growth Des. 2016, 16(11), 6354–6362. DOI: 10.1021/acs.cgd.6b00990
  • Taylor, R.; Macrae, C.F. Rules Governing the Crystal Packing of Mono- and Dialcohols. Acta Cryst. B. 2001, 57(6), 815–827. DOI: 10.1107/S010876810101360X
  • Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. New Software for Searching the Cambridge Structural Database and Visualizing Crystal Structures. Acta Cryst. B. 2002, 58(3), 389–397. DOI: 10.1107/S0108768102003324
  • Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; Streek, J.V.D. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Cryst. 2006, 39(3), 453–457. DOI: 10.1107/S002188980600731X
  • Mui, P.W.; Jacober, S.P.; Hargrave, K.D.; Adams, J. Crystal Structure of Nevirapine, a Non-Nucleoside Inhibitor of HIV-1 Reverse Transcriptase, and Computational Alignment with a Structurally Diverse Inhibitor. J. Med. Chem. 1992, 35(1), 201–202. DOI: 10.1021/jm00079a029
  • Morrison, J.D.; Robertson, J.M. 212. The Crystal and Molecular Structure of Certain Dicarboxylic Acids. Part VII. β-Glutaric Acid. J. Chem. Soc. 1949, 1001–1008. DOI: 10.1039/JR9490001001
  • Caira, M.R.; Bourne, S.A.; Samsodien, H.; Engel, E.; Liebenberg, W.; Stieger, N.; Aucamp, M. Co-Crystals of the Antiretroviral Nevirapine: Crystal Structures, Thermal Analysis and Dissolution Behaviour. CrystEngComm. 2012, 14(7), 2541–2551. DOI: 10.1039/C2CE06507J
  • Moser, P.; Sallmann, A.; Wiesenberg, I. Synthesis and Quantitative Structure-Activity Relationships of Diclofenac Analogs. J. Med. Chem. 1990, 33(9), 2358–2368. DOI: 10.1021/jm00171a008
  • Chao, M.; Schemp, E.; Rosenstein, R.D. 2-Aminopyridine. Acta Cryst. B. 1975, 31(12), 2922–2924. DOI: 10.1107/S0567740875009272

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.