243
Views
4
CrossRef citations to date
0
Altmetric
Articles

Doxorubicin delivery by polymer nanocarrier based on N-methylglucamine resorcinarene

, , , ORCID Icon, ORCID Icon, , , ORCID Icon & show all
Pages 150-161 | Received 22 Oct 2019, Accepted 07 Jan 2020, Published online: 14 Jan 2020

References

  • Menchinskaya M, Gorpenchenko T, Silchenko A, et al. Modulation of doxorubicin intracellular accumulation and anticancer activity by triterpene glycoside cucumarioside A2-2. Mar Drugs. 2019;17:597.
  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Can Res Ther. 2014;10:853–858.
  • Aiken MJ, Suhag V, Garcia CA, et al. Doxorubicin-induced cardiac toxicity and cardiac rest gated blood pool imaging. Clin Nucl Med. 2009;34:762–767.
  • Cage M, Grotz E, Bernabeu E, et al. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today. 2017;22:270–281.
  • Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol 2018;9:1000519.
  • Borišev I, Mrđanovic J, Petrovic D, et al. Nanoformulations of doxorubicin: how far have we come and where do we go from here?. Nanotechnology. 2018;29:332002.
  • Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17:160–166.
  • Shehata M, Mukherjee A, Sharma R, et al. Liposomal doxorubicin in breast cancer. Women’s Health. 2007;557–569. DOI:10.2217/17455057.3.5.557
  • Lao J, Madani J, Puértolas T, et al. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J Drug Deliv. 2013;ID 456409. DOI:10.1155/2013/456409
  • Santra S, Kaittanis C, Santiesteban OJ, et al. Cell-specific, activatable and theranostic prodrug for dual targeted cancer imaging and therapy. J Am Chem Soc. 2011;133:16680–16688.
  • Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56:1273–1289.
  • Mei L, Liu Y, Xia C, et al. Polymer-drug nanoparticles combine doxorubicin carrier and heparin bioactivity functionalities for primary and metastatic cancer treatment. Mol Pharm. 2017;14:513–522.
  • Zhou XX, Jin L, Qi RQ, et al. pH-responsive polymeric micelles self-assembled from amphiphilic copolymer modified with lipid used as doxorubicin delivery carriers. R Soc Open Sci. 2018;5:171654.
  • Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet. 1994;3:253–256.
  • Srivastava A, Amreddy N, Babu A, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 2016;6:38541.
  • Ranathunge TA, Karunaratne D, Rajapakse R, et al. Doxorubicin loaded magnesium oxide nanoflakes as pH dependent carriers for simultaneous treatment of cancer and hypomagnesemia. Nanomaterials. 2019;9:208.
  • Chen Y, Willmott N, Anderson J, et al. Comparison of albumin and casein microspheres as a carrier for doxorubicin. J Pharm Pharmacol. 1987;39:978–985.
  • Bae S, Ma K, Kim TH, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33:1536–1546.
  • Agudelo D, Bérubé G, Tajmir-Riahi HA. An overview on the delivery of antitumor drug doxorubicin by carrier proteins. Int J Biol Macromol. 2016;88:354–360.
  • Xu P, Zuo H, Chen B, et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci Rep. 2017;7:42632.
  • Ngan YH, Gupta M. A comparison between liposomal and nonliposomal formulations of doxorubicin in the treatment of cancer: an updated review. Archives Pharm Pract. 2016;7:1–13.
  • Rahman AM, Yusuf SW, Ewer MS. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int J Nanomedicine. 2007;2:567–583.
  • Wuang SC, Neoh KG, Kang ET, et al. Acid-sensitive magnetic nanoparticles as potential drug depots. AIChE J. 2011;57:1638–1645.
  • Gautier J, Munnier E, Paillard A, et al. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm. 2012;423:16–25.
  • Munnier E, Cohen-Jonathan S, Linassier C, et al. Novel method of doxorubicin-SPION reversible association for magnetic drug targeting. Int J Pharm. 2008;363:170–176.
  • Liang P, Chen Y, Chiang C, et al. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy. Int J Nanomedicine. 2016;11:2021–2037.
  • Schütz CA, Juillerat-Jeanneret L, Mueller H, et al. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine. 2013;8:449–467.
  • Chun C, Lee SM, Kim CW, et al. Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials. 2009;30:4752–4762.
  • Wu W, Chen H, Shan F, et al. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery. Mol Pharm. 2014;11:3378–3385.
  • Yuan Z, Pan Y, Cheng R, et al. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology. 2016;27:245101.
  • Cinar G, Ozdemir A, Hamsici S, et al. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci. 2016;5:67–76.
  • Al-Abd AM, Hong KY, Song SC, et al. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release. 2010;142:101–107.
  • Kang YM, Kim GH, Kim JI, et al. In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. Biomaterials. 2011;32:4556–4564.
  • Luo JW, Zhang T, Zhang Q, et al. A novel injectable phospholipid gel co-loaded with doxorubicin and bromotetrandrine for resistant breast cancer treatment by intratumoral injection. Colloids Surf. B, Biointerfaces. 2016;140:538–547.
  • Shen N, Hu J, Zhang L, et al. Doxorubicin-loaded zein in situ gel for interstitial chemotherapy of colorectal cancer. Acta Pharma Sinica B. 2012;2:610–614.
  • Kim DY, Kwon DY, Kwon JS, et al. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials. 2016;85:232–245.
  • Zhang Y, Yang C, Wang W, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6:21225.
  • Liu C, Liu F, Feng L, et al. The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles. Biomaterials. 2013;34:2547–2564.
  • Mao H, Qian F, Li S, et al. Delivery of doxorubicin from hyaluronic acid-modified glutathione-responsive ferrocene micelles for combination cancer therapy. Mol Pharm. 2019;16:987–994.
  • Sliwa W, Kozlowski C. Calixarenes and resorcinarenes. Synthesis, properties and application. Weinheim: Wiley-VCH; 2009.
  • Sultanova ED, Krasnova EG, Kharlamov SV, et al. Thermoresponsive polymer nanoparticles based on viologen cavitands. ChemPlusChem. 2015;80:217–222.
  • Sultanova ED, Atlanderova AA, Mukhitova RD, et al. Reduction-controlled substrate release from a polymer nanosphere based on a viologen-cavitand. RSC Adv. 2016;6:70072–70076.
  • Sergeeva TY, Mukhitova RK, Nizameev IR, et al. Closed polymer containers based on phenylboronic esters of resorcinarenes. Beilstein J Nanotechnol. 2018;9:1594–1601.
  • Sergeeva TY, Mukhitova RK, Nizameev IR, et al. A glucose-responsive polymer nanocarrier based on sulfonated resorcinarene for controlled insulin delivery. ChemPlusChem. 2019;84:1560–1566.
  • Borborema SE, Schwendener RA, Osso JA Jr., et al. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages. Int J Antimicrob Agents. 2011;38:341–347.
  • Rossetti RC, Perdigão A, Mesquita FS, et al. Effects of flunixin meglumine, recombinant bovine somatotropin and/or human chorionic gonadotropin on pregnancy rates in Nelore cows. Theriogenology. 2011;76:751–758.
  • Warwel S, Brüse F, Schier H. Glucamine-based gemini surfactants I: gemini surfactants from long-chain N-Alkyl glucamines and α,ω-diepoxides. J Surfact Deterg. 2004;7:181–186.
  • Bravo-Nuevo A, Marcy A, Huang M, et al. Meglumine exerts protective effects against features of metabolic syndrome and type II diabetes. PLoS ONE. 2014;9:e90031.
  • Fadaka A, Ajiboye B, Ojo O, et al. Biology of glucose metabolization in cancer cells. J Oncol Sci. 2017;3:45–51.
  • Ryu TY, Park J, Scherer PE. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J. 2014;38:330–336.
  • Kitano S, Hisamitsu I, Koyama Y, et al. Effect of the incorporation of amino groups in a glucose-responsive polymer complex having phenylboronic acid moieties. Polym Adv Technol. 1991;2:261–264.
  • Bhaskar KV, Duggan PJ, Humphrey DG, et al. Phenylboronic acid as a labile protective agent: the selective derivatisation of 1,2,3-triols. J Chem Soc Perkin Trans. 2001;1:1098–1102.
  • Brooks WLA, Sumerlin BS. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem Rev. 2016;116:1375−1397.
  • Gibb BC, Chapman RG, Sherman JC. Synthesis of hydroxyl-footed cavitands. J Org Chem. 1996;61:1505–1509.
  • Lurie J. Handbook of analytical chemistry. Moscow: Mir Publishers; 1975.
  • Yabbarov NG, Posypanova GA, Vorontsov EA, et al. Targeted delivery of doxorubicin: drug delivery system based on PAMAM dendrimers. Biochemistry (Moscow). 2013;78:884–894.
  • Voloshina AD, Semenov VE, Strobykina AS, et al. Synthesis and antimicrobial and toxic properties of novel 1,3-Bis(alkyl)-6-methyluracil derivatives containing 1,2,3- and 1,2,4-triazolium fragments. Russ J Bioorg Chem. 2017;43:170–176.
  • Morozova YE, Kuznetzova LS, Mustafina AR, et al. Aminoalkylated c alix[4]resorcinarenes as pH-sensitive “host” for the charged metalocomplexes. J Incl Phenom. 1999;35:397–407.
  • Hansen JS, Christensen JB, Petersen JF, et al. Arylboronic acids: A diabetic eye on glucose sensing. Sens Actuators B. 2012;161:45–79.
  • Shah S, Chandra A, Kaur A, et al. Fluorescence properties of doxorubicin in PBS buffer and PVA films. J Photochem Photobiol B. 2017;170:65–69.
  • Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–8671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.