459
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Calixarenes functionalised water-soluble iron oxide magnetite nanoparticles for enzyme immobilisation

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 334-344 | Received 30 Dec 2019, Accepted 04 Mar 2020, Published online: 19 Mar 2020

References

  • Ahire VK, Malkhede DD. Interaction studies of haemoglobin with p-sulfonatocalix[8]arene by spectrophotometric methods. Chem Phys Lett. 2019;731:136597.
  • Perret F, Coleman AW. Biochemistry of anionic calix[n]arenes. Chem Comm. 2011;47(26):7303–7319.
  • Dong Z, Luo Q, Liu J. Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev. 2012;41(23):7890–7908.
  • Bhatti AA, Oguz M, Yilmaz M. One-pot synthesis of Fe3O4@Chitosan-pSDCalix hybrid nanomaterial for the detection and removal of Hg2+ ion from aqueous media. Appl Surf Sci. 2018;434:1217–1223.
  • Bhatti AA, Oguz M, Yilmaz M. Magnetizing calixarene: azo dye removal from aqueous media by Fe3O4Nanoparticles fabricated with carboxylic-substituted Calix[4]arene. J Chem Eng Data. 2017;62(9):2819–2825.
  • Moridi N, Danylyuk O, Suwinska K, et al. Monolayers of an amphiphilic para-carboxy-calix[4]arene act as templates for the crystallization of acetaminophen. J Colloid Interface Sci. 2012;377(1):450–455.
  • Shetty D, Skorjanc T, Olson MA, et al. Self-assembly of stimuli-responsive imine-linked calix[4]arene nanocapsules for targeted camptothecin delivery. Chem Comm. 2019;55(60):8876–8879.
  • Yilmaz M, Karanastasis AA, Chatziathanasiadou MV, et al. Inclusion of quercetin in gold nanoparticles decorated with supramolecular hosts amplifies its tumor targeting properties. ACS Appl Bio Mater. 2019;2(7):2715–2725.
  • Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci. 2019;269:187–202.
  • Kumar R, Sharma A, Singh H, et al. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem Rev. 2019;119(16):9657–9721.
  • Yilmaz M, Sayin S. Calixarenes in organo and biomimetic catalysis. In: Neri, P.,  Sessler, J., & Wang, MX. (eds), Calixarenes Beyond. Springer, Cham. 2016;719–742.
  • Coleman AW, Perret F, Moussa A, et al. Calix [n] arenes as protein sensors. In: Schrader T. (eds), Creative Chem Sens Syst. Topics in Current Chemistry, Springer, Berlin, Heidelberg. 2007;31–88.
  • Korchowiec B, Korchowiec J, Orlof-Naturalna M, et al. Two antibacterial nalidixate calixarene derivatives in cholesterol monolayers: molecular dynamics and physicochemical effects. Colloids Surf B Biointerfaces. 2016;145:777–784.
  • Silva ED, Valmalle C, Becchi M, et al. J Inclusion Phenom Macrocyclic Chem. 2003;46(1/2):65–69.
  • Majeed MI, Lu Q, Yan W, et al. Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. J Mat Chem B. 2013;1(22):2874–2884.
  • Laurent S, Dutz S, Häfeli UO, et al. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1–2):8–23.
  • Lartigue L, Oumzil K, Guari Y, et al. Water-soluble rhamnose-coated Fe3O4 nanoparticles. Org Lett. 2009;11(14):2992–2995.
  • Xu Y, Qin Y, Palchoudhury S, et al. Water-Soluble Iron Oxide Nanoparticles with High Stability and Selective Surface Functionality. Langmuir. 2011;27(14):8990–8997.
  • Amstad E, Gillich T, Bilecka I, et al. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett. 2009;9(12):4042–4048.
  • Korpany KV, Mottillo C, Bachelder J, et al. One-step ligand exchange and switching from hydrophobic to water-stable hydrophilic superparamagnetic iron oxide nanoparticles by mechanochemical milling. Chem Comm. 2016;52(14):3054–3057.
  • Lee S, Fursina A, Mayo JT, et al. Electrically driven phase transition in magnetite nanostructures. Nat Mater. 2008;7:130.
  • Nagesha DK, Plouffe BD, Phan M, et al. Functionalization-induced improvement in magnetic properties of Fe3O4 nanoparticles for biomedical applications. J Appl Phys. 2009;105(7):07B317.
  • Gutsche CD, Nam KC. Calixarenes. 22. Synthesis, properties, and metal complexation of aminocalixarenes. J Am Chem Soc. 1988;110(18):6153–6162.
  • Gutsche CD, Dhawan B, No KH, et al. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc. 1981;103(13):3782–3792.
  • Arnaud-Neu F, Collins EM, Deasy M, et al. Synthesis, x-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors. J Am Chem Soc. 1989;111(23):8681–8691.
  • Ten’kovtsev AV, Razina AB. Nonionogenic star-shaped calix[8]arenes: synthesis and ionophore properties. Russ J Appl Chem. 2009;82(9):1615–1619.
  • Shinkai S, Araki K, Tsubaki T, et al. New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. J Chem Soc Perkin Trans. 1987;1:2297–2299.
  • Casnati A, Ting Y, Berti D, et al. Synthesis of water soluble molecular receptors from calix[4]arenes fixed in the cone conformation. Tetrahedron. 1993;49(43):9815–9822.
  • Sayin S, Akoz E, Yilmaz M. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes. Org Biomol Chem. 2014;12:6634–6642.
  • Chiou S-H, Wu W-T. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials. 2004;25(2):197–204.
  • Cui Y, Li Y, Yang Y, et al. Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization. J Biotechnol. 2010;150(1):171–174.
  • Ozyilmaz E, Sayin S, Arslan M, et al. Improving catalytic hydrolysis reaction efficiency of sol–gel-encapsulated Candida rugosa lipase with magnetic β-cyclodextrin nanoparticles. Colloids Surf B Biointerfaces. 2014;113:182–189.
  • Romero CM, Spuches FC, Morales AH, et al. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis. Colloids Surf B Biointerfaces. 2018;172:699–707.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72(1–2):248–254.
  • Chiou S-H, W-T W. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials. 2004;25(2):197–204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.