458
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Sensitive fluorescence detection of saliva pepsin by a supramolecular tandem assay enables the diagnosis of gastroesophageal reflux disease

, , &
Pages 80-87 | Received 28 Oct 2020, Accepted 24 Nov 2020, Published online: 21 Dec 2020

References

  • Richter JE, Rubenstein JH. Presentation and epidemiology of gastroesophageal reflux disease. Gastroenterology. 2018;154(2):267–276.
  • Cao H, Huang X, Zhi X, et al. Association between tea consumption and gastroesophageal reflux disease. Medicine (Baltimore). 2019;98(4):e14173.
  • Fortunato JE, D’Agostino RB Jr., Lively MO. Pepsin in saliva as a biomarker for oropharyngeal reflux compared with 24-hour esophageal impedance/pH monitoring in pediatric patients. Neurogastroenterol Motil. 2017;29(2):e12936.
  • Hunt R, Armstrong D, Katelaris P, et al. World gastroenterology organisation global guidelines. J Clin Gastroenterol. 2017;51(6):467–478.
  • Gyawali CP, Kahrilas PJ, Savarino E, et al. Modern diagnosis of GERD: the lyon consensus. Gut. 2018;67(7):1351–1362.
  • Gonzalez Ayerbe JI, Hauser B, Salvatore S, et al. Diagnosis and management of gastroesophageal reflux disease in infants and children: from guidelines to clinical practice. Pediatr Gastroenterol Hepatol Nutr. 2019;22(2):107–121.
  • Pandolfino J. Ambulatory esophageal pH monitoring using a wireless system. Am J Gastroenterol. 2003;98(4):740–749.
  • Johnston N, Dettmar PW, Ondrey FG, et al. Pepsin: biomarker, mediator, and therapeutic target for reflux and aspiration. Ann NY Acad Sci. 2018;1434(1):282–289.
  • Guo Z, Wu H, Jiang J, et al. Pepsin in saliva as a diagnostic marker for gastroesophageal reflux disease: a meta-analysis. Med Sci Monit. 2018;24:9509–9516.
  • Knight J, Lively MO, Johnston N, et al. Sensitive pepsin immunoassay for detection of laryngopharyngeal reflux. Laryngoscope. 2005;115(8):1473–1478.
  • Saritas Yuksel E, Hong SK, Strugala V, et al. Rapid salivary pepsin test: blinded assessment of test performance in gastroesophageal reflux disease. Laryngoscope. 2012;122(6):1312–1316.
  • Lee D, Lee YJ, Eun YG, et al. Label-free detection of salivary pepsin using gold nanoparticle/polypyrrole nanocoral modified screen-printed electrode. Sensors. 2018;18(6):1685.
  • Barona-Lleó L, Duval C, Barona-de Guzmán R. Test de pepsina en saliva: prueba útil y sencilla para el diagnóstico del reflujo faringo-laríngeo. Acta Otorrinolaringol Esp. 2018;69(2):80–85.
  • Woodland P, Singendonk MMJ, Ooi J, et al. Measurement of salivary pepsin to detect gastroesophageal reflux disease is not ready for clinical application. Clin Gastroenterol Hepatol. 2019;17(3):563–565.
  • Hennig A, Bakirci H, Nau WM. Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat Methods. 2007;4(8):629–632.
  • Anslyn EV. Supramolecular analytical chemistry. J Org Chem. 2007;72(3):687–699.
  • Nguyen BT, Anslyn EV. Indicator–displacement assays. Coord Chem Rev. 2006;250(23–24):3118–3127.
  • Dsouza RN, Hennig A, Nau WM. Supramolecular tandem enzyme assays. Chem Eur J. 2012;18(12):3444–3459.
  • Nau WM, Ghale G, Hennig A, et al. Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. J Am Chem Soc. 2009;131(32):11558–11570.
  • Florea M, Kudithipudi S, Rei A, et al. A fluorescence-based supramolecular tandem assay for monitoring lysine methyltransferase activity in homogeneous solution. Chem Eur J. 2012;18(12):3521–3528.
  • Yue YX, Kong Y, Yang F, et al. Supramolecular tandem assay for Pyridoxal-5′-phosphate by the reporter pair of Guanidinocalix[5]Arene and fluorescein. ChemistryOpen. 2019;8(12):1437–1440.
  • Florea M, Nau WM. Implementation of anion-receptor macrocycles in supramolecular tandem assays for enzymes involving nucleotides as substrates, products, and cofactors. Org Biomol Chem. 2010;8(5):1033–1039.
  • Bailey DM, Hennig A, Uzunova VD, et al. Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids. Chem Eur J. 2008;14(20):6069–6077.
  • Guo DS, Liu Y. Supramolecular chemistry of p-Sulfonatocalix[n]arenes and its biological applications. Acc Chem Res. 2014;47(7):1925–1934.
  • Peng S, Barba-Bon A, Pan YC, et al. Phosphorylation-responsive membrane transport of peptides. Angew Chem Int Ed. 2017;56(49):15742–15745.
  • Xu Z, Jia S, Wang W, et al. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat Chem. 2019;11(1):86–93.
  • Zheng Z, Geng WC, Gao J, et al. Differential calixarene receptors create patterns that discriminate glycosaminoglycans. Org Chem Front. 2018;5(18):2685–2691.
  • Pan YC, Wang H, Xu X, et al. Coassembly of macrocyclic amphiphiles for anti-β-amyloid therapy of Alzheimer’s disease. CCS Chem. 2020. DOI:https://doi.org/10.31635/ccschem.020.202000561
  • Pan YC, Hu XY, Guo DS. Biomedical applications of calixarenes: state-of-the-art and perspectives. Angew Chem Int Ed. 2020. DOI:https://doi.org/10.1002/anie.201916380
  • Zheng Z, Geng WC, Gao J, et al. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene. Chem Sci. 2018;9(8):2087–2091.
  • Geng WC, Jia S, Zheng Z, et al. A noncovalent fluorescence turn-on strategy for hypoxia imaging. Angew Chem Int Ed. 2019;58(8):2377–2381.
  • Guo DS, Wang K, Wang YX, et al. Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc. 2012;134(24):10244–10250.
  • Sansone F, Dudic M, Donofrio G, et al. DNA condensation and cell transfection properties of guanidinium calixarenes: dependence on macrocycle lipophilicity, size, and conformation. J Am Chem Soc. 2006;128:14528–14536.
  • Gao J, Li J, Geng WC, et al. Biomarker displacement activation: a general host–guest strategy for targeted phototheranostics in vivo. J Am Chem Soc. 2018;140(14):4945–4953.
  • Guo DS, Yang J, Liu Y. Specifically monitoring butyrylcholinesterase by supramolecular tandem assay. Chem Eur J. 2013;19(27):8755–8759.
  • Ryle AP, Porter RR. Parapepsins: two proteolytic enzymes associated with porcine pepsin. Biochem J. 1959;73(1):75–86.
  • Athauda S, Takahashi K. Cleavage specificities of aspartic proteinases toward oxidized insulin B chain at different pH values. Protein Pept Lett. 2002;9(4):289–294.
  • Arena G, Casnati A, Contino A, et al. Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling. Org Biomol Chem. 2006;4(2):243–249.
  • Liu Y, Perez L, Gill AD, et al. Site-selective sensing of histone methylation enzyme activity via an arrayed supramolecular tandem assay. J Am Chem Soc. 2017;139(32):10964–10967.
  • McGovern RE, McCarthy AA, Crowley PB. Protein assembly mediated by sulfonatocalix[4]arene. Chem Commun. 2014;50(72):10412–10415.
  • Shinde MN, Barooah N, Bhasikuttan AC, et al. Inhibition and disintegration of insulin amyloid fibrils: a facile supramolecular strategy with p-sulfonatocalixarenes. Chem Commun. 2016;52(14):2992–2995.
  • Zhao H, Yang XH, Pan YC, et al. Inhibition of insulin fibrillation by amphiphilic sulfonatocalixarene. Chin Chem Lett. 2020;31(7):1873–1876.
  • Guo DS, Uzunova VD, Su X, et al. Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem. Sci. 2011;2(9):1722–1734.
  • Jackson WT, Schlamowitz M, Shaw A. Kinetics of the pepsin-catalyzed hydrolysis of N-Acetyl-L-phenylalanyl-L-diiodotyrosine*. Biochemistry. 1965;4(8):1537–1543.
  • Singendonk MM, Benninga MA, Van Wijk MP. Reflux monitoring in children. Neurogastroenterol. Motil. 2016;28(10):1452–1459.
  • Shinkai S, Mori S, Tsubaki T, et al. New water-soluble host molecules derived from calix[6]arene. Tetrahedron Lett. 1984;25(46):5315–5318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.