454
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, photophysical and assembly studies of novel luminescent lanthanide(III) complexes of 1,2,3-triazolyl-pyridine-2,6-dicarboxamide-based ligands

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 160-173 | Received 12 Apr 2021, Accepted 27 Jun 2021, Published online: 18 Aug 2021

References

  • Kitchen JA, Gunnlaugsson T. Lanthanides: supramolecular Chemistry. In: Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd, London, UK; 2012.
  • Kitchen JA, Gale PA. Complexity of Supramolecular Assemblies. In: Keene FR, editor. Chirality in Supramolecular Assemblies. John Wiley & Sons, Ltd: The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom; 2016. p. 94–141.
  • Barry DE, Caffrey DF, Gunnlaugsson T, et al. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem Soc Rev. 2016;45(11):3244–3274.
  • Bünzli J-CG. Review: lanthanide coordination chemistry: from old concepts to coordination polymers. J Coord Chem. 2014;67(23–24):3706–3733.
  • Byrne JP, Kitchen JA, Gunnlaugsson T, et al. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry. Chem Soc Rev. 2014;43(15):5302–5325.
  • Bünzli J-CG. Benefiting from the unique properties of lanthanide ions. Acc Chem Res. 2006;39(1):53–61.
  • Bünzli J-CG. Lanthanide Photonics: shaping the Nanoworld. Trends Chem. 2019;1(8):751–762.
  • Bünzli J-CG, Comby S, Chauvin A-S, et al. New opportunities for lanthanide luminescence. J Rare Earth. 2007;25(3):257–274.
  • Bünzli J-CG, Piguet C. Taking advantage of luminescent lanthanide ions. Chem Soc Rev. 2005;34(12):1048–1077.
  • Butler SJ, Parker D. Anion binding in water at lanthanide centres: from structure and selectivity to signalling and sensing. Chem Soc Rev. 2013;42(4):1652–1666.
  • Eliseeva SV, Bünzli J-CG. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev. 2010;39(1):189–227.
  • Parker D. Excitement in f block: structure, dynamics and function of nine-coordinate chiral lanthanide complexes in aqueous media. Chem Soc Rev. 2004;33(3):156–165.
  • Woodruff DN, Winpenny REP, Layfield RA, et al. Lanthanide single-molecule magnets. Chem Rev. 2013;113(7):5110–5148.
  • Kitchen JA. Lanthanide-based self-assemblies of 2,6-pyridyldicarboxamide ligands: recent advances and applications as next-generation luminescent and magnetic materials. Coord Chem Rev. 2017;340:232–246.
  • Kitchen JA, Barry DE, Mercs L, et al. Circularly polarized lanthanide luminescence from Langmuir–Blodgett films formed from optically active and amphiphilic Eu(III)-based self-assembly complexes. Angew Chem Int Ed. 2012;51(3):704–708.
  • Barry DE, Kitchen JA, Albrecht M, et al. Near infrared (NIR) lanthanide emissive Langmuir–Blodgett monolayers formed using Nd(III) directed self-assembly synthesis of chiral Amphiphilic ligands. Langmuir. 2013;29(36):11506–11515.
  • Galanti A, Kotova O, Blasco S, et al. Exploring the effect of ligand structural isomerism in Langmuir–Blodgett films of chiral luminescent Eu(III) self-assemblies. Chem Eur J. 2016;22(28):9709–9723.
  • Barry DE, Kitchen JA, Mercs L, et al. Chiral luminescent lanthanide complexes possessing strong (samarium, Sm(III)) circularly polarised luminescence (CPL), and their self-assembly into Langmuir–Blodgett films. Dalton Trans. 2019;48(30):11317–11325.
  • Leonard JP, Jensen P, McCabe T, et al. Self-assembly of chiral luminescent lanthanide coordination bundles. J Am Chem Soc. 2007;129(36):10986–10987.
  • Muller FC, Muller G, Riehl JP, et al. Emission detected circular dichroism from long-lived excited states: application to chiral Eu(III) systems. Chirality. 2007;19(10):826–832.
  • Stomeo F, Lincheneau C, Leonard JP, et al. Metal-directed synthesis of enantiomerically pure dimetallic lanthanide luminescent triple-stranded helicates. J Am Chem Soc. 2009;131(28):9636–9637.
  • Lincheneau C, Peacock RD, Gunnlaugsson T, et al. Europium directed synthesis of enantiomerically pure dimetallic luminescent “Squeezed” triple-stranded helicates; solution studies. Chem. Asian J. 2010;5(3):500–504.
  • Kotova O, Kitchen JA, Lincheneau C, et al. Probing the effects of ligand isomerism in chiral luminescent lanthanide supramolecular self-assemblies: a europium “Trinity Sliotar” study. Chem Eur J. 2013;19(48):16181–16186.
  • Barry DE, Kitchen JA, Pandurangan K, et al. Formation of enantiomerically pure luminescent triple-stranded dimetallic europium helicates and their corresponding hierarchical self-assembly formation in protic polar solutions. Inorg Chem. 2020;59(5):2646–2650.
  • Zhu Q-Y, Zhou L-P, Cai L-X, et al. Chiral auxiliary and induced chiroptical sensing with 5d/4f lanthanide–organic macrocycles. Chem Commun. 2020;56(19):2861–2864.
  • Lincheneau C, Jean-Denis B, Gunnlaugsson T, et al. Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions. Chem Commun. 2014;50(22):2857–2860.
  • Zhang G, Gil-Ramírez G, Markevicius A, et al. Lanthanide template synthesis of trefoil knots of single handedness. J Am Chem Soc. 2015;137(32):10437–10442.
  • Gil-Ramírez G, Hoekman S, Kitching MO, et al. Tying a molecular overhand knot of single handedness and asymmetric catalysis with the corresponding Pseudo-D3-symmetric trefoil knot. J Am Chem Soc. 2016;138(40):13159–13162.
  • Leigh DA, Pirvu L, Schaufelberger F, et al. Securing a supramolecular architecture by tying a stopper knot. Angew Chem Int Ed. 2018;57(33):10484–10488.
  • Leigh DA, Pirvu L, Schaufelberger F, et al. Stereoselective synthesis of molecular square and granny knots. J Am Chem Soc. 2019;141(14):6054–6059.
  • Hamacek J, Bernardinelli G, Filinchuk Y, et al. Tetrahedral assembly with lanthanides: toward discrete polynuclear complexes. Eur J Inorg Chem. 2008;2008(22):3419–3422.
  • El Aroussi B, Guénée L, Pal P, et al. Lanthanide-mediated supramolecular cages and host–guest interactions. Inorg Chem. 2011;50(17):8588–8597.
  • Hamacek J, Besnard C, Penhouet T, et al. Properties of polynuclear lanthanide complexes with a tripodal ligand: insight into their self-assembly. Chem Eur J. 2011;17(24):6753–6764.
  • Adhikary A, Jena HS, Khatua S, et al. Synthesis and characterization of two discrete Ln10 nanoscopic ladder-type cages: magnetic studies reveal a significant cryogenic magnetocaloric effect and slow magnetic relaxation. Chem. Asian J. 2014;9(4):1083–1090.
  • Yan -L-L, Tan C-H, Zhang G-L, et al. Stereocontrolled self-assembly and self-sorting of luminescent europium tetrahedral cages. J Am Chem Soc. 2015;137(26):8550–8555.
  • Wu J, Zhao L, Zhang L, et al. Metallosupramolecular coordination complexes: the design of heterometallic 3d–4f grid like structures. Inorg Chem. 2016;55(11):5514–5519.
  • Wang Z, Zhou L-P, Zhao T-H, et al. Hierarchical self-assembly and chiroptical studies of luminescent 4d–4f cages. Inorg Chem. 2018;57(13):7982–7992.
  • Yan -Q-Q, Zhou L-P, Zhou H-Y, et al. Metallopolymers cross-linked with self-assembled Ln4L4 cages. Dalton Trans. 2019;48(21):7080–7084.
  • Barja BC, Aramendía PF. Luminescent Eu(III) hybrid materials for sensor applications. Photochem Photobiol Sci. 2008;7(11):1391–1399.
  • Li Y, Chian W, Wang X, et al. Characterization of red-emitting Europium (III) organic/inorganic polymeric hybrids. Photochem Photobiol. 2011;87(3):618–625.
  • Zhou Z, Zheng Y, Wang Q. Extension of novel lanthanide luminescent mesoporous nanostructures to detect fluoride. Inorg Chem. 2014;53(3):1530–1536.
  • Bradberry SJ, Savyasachi AJ, Peacock RD, et al. Quantifying the formation of chiral luminescent lanthanide assemblies in an aqueous medium through chiroptical spectroscopy and generation of luminescent hydrogels. Faraday Discuss. 2015;185:413–431.
  • Martínez-Calvo M, Kotova O, Möbius ME, et al. Healable luminescent self-assembly supramolecular metallogels possessing lanthanide (Eu/Tb) dependent rheological and morphological properties. J Am Chem Soc. 2015;137(5):1983–1992.
  • Zhou Z, Wang Q, Zhang CC, et al. Molecular imaging of biothiols and in vitro diagnostics based on an organic chromophore bearing a terbium hybrid probe. Dalton Trans. 2016;45(17):7435–7442.
  • Renaud F, Piguet C, Bernardinelli G, et al. In search for mononuclear helical lanthanide building blocks with predetermined properties: triple-stranded helical complexes with N,N,N’,N’-tetraethylpyridine-2,6-dicarboxamide. Chem Eur J. 1997;3(10):1646–1659.
  • Renaud F, Piguet C, Bernardinelli G, et al. Nine-coordinate lanthanide podates with predetermined structural and electronic properties: facial organization of unsymmetrical tridentate binding units by a protonated covalent tripod. J Am Chem Soc. 1999;121(40):9326–9342.
  • Muller G, Schmidt B, Jiricek J, et al. Lanthanide triple helical complexes with a chiral ligand derived from 2,6-pyridinedicarboxylic acid. J. Chem. Soc., Dalton Trans. 2001;18(18):2655–2662.
  • Kotova O, Blasco S, Twamley B, et al. The application of chiroptical spectroscopy (circular dichroism) in quantifying binding events in lanthanide directed synthesis of chiral luminescent self-assembly structures. Chem Sci. 2015;6(1):457–471.
  • Cai L-X, Yan -L-L, Li S-C, et al. Stereocontrolled self-assembly and photochromic transformation of lanthanide supramolecular helicates. Dalton Trans. 2018;47(40):14204–14210.
  • Johnson KR, de Bettencourt-Dias A. 1O2 generating luminescent lanthanide complexes with 1,8-Naphthalimide-based sensitizers. Inorg Chem. 2019;58(19):13471–13480.
  • Jesudas JJ, Pham CT, Hagenbach A, et al. Trinuclear CoIILnIIICoII complexes (Ln = La, Ce, Nd, Sm, Gd, Dy, Er, and Yb) with 2,6-Dipicolinoylbis(N,N-diethylthiourea): synthesis, structures, and magnetism. Inorg Chem. 2020;59(1):386–395.
  • Tigaa RA, Lucas GJ, de Bettencourt-Dias A, et al. ZnS nanoparticles sensitize luminescence of capping-ligand-bound lanthanide ions. Inorg Chem. 2017;56(6):3260–3268.
  • Minoofar PN, Dunn BS, Zink JI, et al. Multiply doped nanostructured Silicate sol−gel thin films: spatial segregation of dopants, energy transfer, and distance measurements. J Am Chem Soc. 2005;127(8):2656–2665.
  • Li Z, Zuo S, Zhou J, et al. Synthesis and luminescence of Eu-N2,N6-Bis(2-hydroxyethyl)pyridine-2,6-dicarboxamide complexes containing mesoporous material. Chin. J. Chem. 2015;33(2):292–297.
  • He X, Norel L, Hervault Y-M, et al. Modulation of Eu(III) and Yb(III) luminescence using a DTE photochromic ligand. Inorg Chem. 2016;55(24):12635–12643.
  • Ziegler T, Hermann C. Synthesis of novel multidentate carbohydrate-triazole ligands. Tetrahedron Lett. 2008;49(13):2166–2169.
  • Chauhan A, Paladhi S, Debnath M, et al. A small molecule peptidomimetic that binds to c-KIT1 G-quadruplex and exhibits antiproliferative properties in cancer cells. Bioorg. Med Chem. 2014;22(16):4422–4429.
  • Lal K, Kaushik CP, Kumar K, et al. One-pot synthesis and cytotoxic evaluation of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med. Chem. Res. 2014;23(11):4761–4770.
  • Yim S-L, Chow H-F, Chan M-C, et al. Transition from low molecular weight non-gelating oligo(amide-triazole)s to a restorable, halide-responsive poly(amide-triazole) supramolecular gel. Chem Commun. 2014;50(23):3064–3066.
  • Lal K, Kaushik CP, Kumar A, et al. Antimicrobial evaluation, QSAR and docking studies of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med. Chem. Res. 2015;24(8):3258–3271.
  • Adam C, Faour L, Bonnin V, et al. Supramolecular chemistry of helical foldamers at the solid–liquid interface: self-assembled monolayers and anion recognition. Chem Commun. 2019;55(58):8426–8429.
  • Faour L, Adam C, Gautier C, et al. Redox-controlled hybridization of helical foldamers. Chem Commun. 2019;55(40):5743–5746.
  • Naskar S, Jana B, Ghosh P, et al. Anion-dependent thermo-responsive supramolecular superstructures of Cu(ii) macrocycles. Dalton Trans. 2018;47(16):5734–5742.
  • Crosby GA, Demas JN. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. A. 1971;75(8):991–1024.
  • Chauvin AS, Gumy F, Imbert D, et al. Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination. Spectrosc. Lett. 2004;37(5):517–532.
  • Chauvin AS, Gumy F, Imbert D, et al. Erratum. Spectrosc Lett. 2007;40(1):193.
  • Coles SJ, Gale PA. Changing and challenging times for service crystallography. Chem Sci. 2012;3(3):683–689.
  • CrystalClear-SM Expert 3.1, Rigaku. 2012.
  • CrysAlisPro 38.41, Rigaku Oxford Diffraction. 2015.
  • Sheldrick G. A short history of SHELX. Acta Crystallogr., Sect. A. 2008;64(1):112–122.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr. 2009;42(2):339–341.
  • Perdew JP, Burke K, Ernzerhof M, et al. Generalized gradient approximation made simple. [phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997;78(7):1396.
  • Perdew JP, Burke K, Ernzerhof M, et al. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.
  • Jr. THD. Gaussian basis sets for use in correlated molecular calculations I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90(2):1007–1023.
  • Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7(18):3297–3305.
  • Dolg M, Stoll H, Savin A, et al. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta. 1989;75(3):173–194.
  • Dolg M, Stoll H, Preuss H, et al. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chem. Acta. 1993;85(6):441–450.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 Rev. C.01. Wallingford, CT, USA; 2016.
  • Crowley JD, Bandeen PH, Hanton LR, et al. A one pot multi-component CuAAC “click” approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: synthesis, X-ray structures and copper(II) and silver(I) complexes. Polyhedron. 2010;29(1):70–83.
  • Jagannathan R, Soundararajan S. Complexes Of Lanthanide Perchlorates With N,N,N′N′-Tetramethyl Pyridine Dicarboxamide. J Coord Chem. 1979;9(1):31–35.
  • Le Borgne T, Bénech J-M, Floquet S, et al. Monometallic lanthanide complexes with tridentate 2,6-dicarboxamidopyridine ligands. Influence of peripheral substitutions on steric congestion and antenna effect. Dalton Trans. 2003;(20):3856–3868. DOI:https://doi.org/10.1039/B307413G
  • Hua KT, Xu J, Quiroz EE, et al. Structural and photophysical properties of visible- and near-IR-emitting Tris Lanthanide(III) complexes formed with the enantiomers of N,N′-Bis(1-phenylethyl)-2,6-pyridinedicarboxamide. Inorg Chem. 2012;51(1):647–660.
  • Da Silva ES, Wong-Wah-Chung P, Sarakha M, et al. Photophysical characterization of the plant growth regulator 2-(1-naphthyl) acetamide. J Photochem Photobiol A. 2013;265:29–40.
  • Yeung C-T, Chan WTK, Yan S-C, et al. Lanthanide supramolecular helical diastereoselective breaking induced by point chirality: mixture or P-helix, M-helix. Chem Commun. 2015;51(3):592–595.
  • Binnemans K. Interpretation of europium(III) spectra. Coord Chem Rev. 2015;295:1–45.
  • ReactLabTM EQUILIBRIA, Jplus consulting multivariate analytical technologies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.