352
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Thiophene-benzothiadiazole based donor–acceptor–donor (D-A-D) bolaamphiphiles, self-assembly and photophysical properties

, , , &
Pages 174-182 | Received 28 May 2021, Accepted 14 Jul 2021, Published online: 26 Oct 2021

References

  • (a) Burgi L, Turbiez M, Pfeiffer R, et al. High-Mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv Mater. 2008, 20(11), 2217. ( b) Sonar P, Singh SP, Surin PLM, Lazzaroni R, Lin TT, Dodabalapur A, Sellinger, A. J. Mater. Chem. 2009, 19, 3228–3237
  • Wang JL, Xiao Q, Pei J. Benzothiadiazole-Based D−π-A−π-D organic dyes with tunable band gap: synthesis and photophysical properties. Org Lett. 2010, 12(18), 4164–4167.
  • (a) Chen P, Wang LP, Tan WY, et al. Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzothiadiazole: a joint optical, electroluminescence, and magnetoelectroluminescence study. ACS Appl Mater Interfaces. 2015, 7(4), 2972–2978. (b) Tsai JH, Lee WY, Chen WC, et al. New two-dimensional thiophene acceptor conjugated copolymers for field effect transistor and photovoltaic cell applications.Chem. Mater. 2010, 22, 3290–3299; (c) Karikomi M, Kitamura C, Tanaka S, et al. New narrow-bandgap polymer composed of benzobis(1, 2, 5-thiadiazole) and thiophenes. J. Am. Chem. Soc. 1995, 117, 6791–6792; (d) Yamashita Y, Ono K, Tomuraand M, et al. Synthesis and characterization of new electron donors containing 1, 2, 5-thiadiazole and 1, 1′-dihydro-4, 4′-bi(pyridylidene) units.Chem. Commun. 1997, 19, 1851–1852; (e) Ritonga MTS, Sakurai H, Hirao T. Synthesis and characterization of p-phenylenediamine derivatives bearing a thiadiazole unit. Tetra. Lett. 2002, 43, 9009–9013; (f) Neto BAD, Lopes ASA, Ebeling G, et al. Photophysical and electrochemical properties of π-extended molecular 2,1,3-benzothiadiazoles. Tetrahedron. 2005, 61, 10975–10982; (g) Yamashita Y, Suzuki K, Tomura M. Novel electron acceptors containing thiadiazole and thiophene units. Synth. Met. 2003, 133, 341–343; (h) Akhtaruzzaman M, Kamata N, Nishida J, et al. Synthesis, characterization and FET properties of novel dithiazolylbenzothiadiazole derivatives. Chem. Commun. 2005, 25, 3183–3185; (i) Zhang M, Tsao HN, Pisula W, et al. Field-Effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. J. Am. Chem. Soc. 2007, 129, 3472–3473; (j) Zaumseil J, Donley CL, Kim JS, et al. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 2006, 20, 2708–2712; (k) Svensson M, Zhang FL, Veenstra SC, et al. High-performance polymer solar cells of an alternating polyfluorene copolymerand a fullerene derivative. Adv. Mater. 2003, 15, 988–991; (l) Bundgaard E, Krebs, F. C. Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole). Sol. Energy Mater. Sol. Cells. 2007, 91, 1019–1025; (m) Bundgaard E, Krebs FC. A comparison of the photovoltaic response of head-tohead and head-to-tail coupled poly{(benzo-2, 1, 3-thiadiazol-4, 7-diyl)-(dihexyl[2, 2’]dithiophene-5, 5’-diyl}. Poly. Bull. 2005, 55, 157–164; (n) Muhlbacher D, Scharber M, Morana M, et al. High photovoltaic performance of a low-band gap polymer. Adv. Mater. 2006, 18, 2884–2889; (o) Bundgaard E, Krebs FC. Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole). Macromolecules. 2006, 39, 2823–2831; (p) Bundgaard E, Shaheen SE, Krebs FC, et al. Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole. Sol. Energy Mater.Sol. Cells. 2007, 91, 1631–1637
  • (a) Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew Chem Int Ed. 2013, 52, 8828–8878; (b) Ungar G, Tschierske C, Abetz V, et al. Self-assembly at different length scales: polyphilic star-branched liquid crystals and miktoarm star copolymers. Adv. Funct. Mater. 2011, 21, 1296–1323
  • (a) Tschierske C, Nürnberger C, Ebert H, et al. Complex tiling patterns in liquid crystals. Interface Focus. 2012, 2(5), 669–680. (b) Cheng XH, Prehm M, Das MK, et al. Calamitic bolaamphiphiles with (semi)perfluorinated lateral chains: polyphilic block molecules with new liquid crystalline phase structures. J. Am. Chem. Soc. 2003, 125, 10977–10996; (c) Prehm M, Gotz G, Bäuerle P, et al. Complex liquid-crystalline superstructure of a p-conjugated oligothiophene. Angew. Chem. Int. Ed. 2007, 119, 8002–8005
  • Poppe M, Chen CL, Liu F, et al. Emergence of tilt in square honeycomb liquid crystals. Soft Matter. 2017, 13(27), 4676–4680. (b) Lechner B-D, Ebert H, Prehm M, et al. Temperature-dependent in-plane structure formation of an X‑shaped bolapolyphile within lipid bilayers. Langmuir. 2015, 31, 2839–2850; (c) Glettner B, Liu F, Zeng X, et al. Liquid-crystalline kagome. Angew. Chem. Int. Ed. 2008, 47, 9063–9066.
  • Xiao YL, Zhang RL, Gao HF, et al. Benzothiadiazole-based bolaamphiphiles: synthesis, self-assembly and white-light emissive properties. J Mater Chem C. 2019, 7(5), 1237–1245.
  • (a) Grimme S, Diedrich C, Korth M. The importance of inter- and intramolecular van der waals interactions in organic reactions: the dimerization of anthracene revisited. Angew Chem Int Ed. 2006, 45(4), 625–629. (b) Hu RR, Lager E, Aguilar-Aguilar A, et al. Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J. Phys. Chem. C. 2009, 113, 15845–15853
  • Immirzi A, Perini B. Prediction of density in organic crystals. ActaCrystallogr. Sect. A. 1977, 33, 216–218.
  • (a) Raeburn J, Cardoso AZ, Adams. DJ. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev. 2013, 42(12), 5143–5156. (b) Buerkle LE, Rowan SJ. Supramolecular gels formed from multi-component low molecular weight species. Chem. Soc. Rev. 2012, 41, 6089–6102; (c) Yu G, Yan X, Han C, et al. Characterization of supramolecular gels. Chem. Soc. Rev. 2013, 42, 6697–6722
  • (a) Huang CF, Chang JY, Huang SH, et al. Polymorphisms and morphological studies of a difluorobenzothiadiazole conjugated copolymer with 7.8% polymer solar cell efficiency. J Mater Chem A. 2015, 3(7), 3968–3974. (b) Zhang M, Guo X, Ma W, et al.  An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells. Adv. Mater. 2014, 26, 2089–2095; (c) Zhang GB, Chen JH, Dai, YR, et al. Synthesis and optimization solid-state order using side-chain position of thieno-isoindigo derivative-based D–A polymers for high-performance ambipolar organic thin films transistors. Dyes Pigm. 2017, 137, 221–228; (d) Roquet S, Cravino A, Leriche P, et al. Triphenylamine−thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J. Am. Chem. Soc. 2006, 128, 3459–3466
  • Marrocchi A, Seri M, Kim C, et al. Low-dimensional arylacetylenes for solution-processable organic field-effect transistors. Chem Mater. 2009, 21(13), 2592–2594.
  • Zhang Z, Yuan DF, Liu XS, et al. BODIPY-Containing polymers with ultralow band gaps and ambipolar charge mobilities. Macromolecules. 2020, 53(6), 2014–2020.
  • Huang LQ, Zhang GJ, Zhang K, et al. Benzodithiophene–dithienylbenzothiadiazole copolymers for efficient polymer solar cells: side-chain effect on photovoltaic performance. ACS Appl Mater Interfaces. 2018, 10(40), 34355–34362.
  • (a) Chandima B, Ruwan G, Ruvanthi K, et al. Thieno[3,2-b]pyrrole-benzothiadiazole banana-shaped small molecules for organic field-effect transistors. ACS Appl Mater Interfaces. 2018, 10(14), 11818–11825. (b) Chen JY, Jiang YY, Yang J, et al. ACS Appl. Mater. Interfaces. 2018, 10, 25858-25865

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.