1,286
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Predicting the hydrolytic breakdown rates of organophosphorus chemical warfare agent simulants using association constants derived from hydrogen bonded complex formation events

, , , &
Pages 309-317 | Received 29 Jul 2021, Accepted 21 Oct 2021, Published online: 10 Nov 2021

References

  • Delfino RT, Ribeiro TS, Figueroa-Villar JD. Organophosphorus Compounds as Chemical Warfare Agents: a Review. J Braz Chem Soc. 2009;20(3):407–428.
  • Badr AM.Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments.Environ Sci Pollut Res.2020July1;27(21):26036–26057. Springer.
  • Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, et al. Acetylcholinesterase inhibitors (Nerve agents) as weapons of mass destruction: history, mechanisms of action, and medical countermeasures. Neuropharmacology. 2020December15;181:108298. Elsevier Ltd.
  • Statement by the Federal Government on the Navalny case. [Cited 2021 May 24. https://archiv.bundesregierung.de/archiv-de/meta/startseite/statement-by-the-federal-government-on-the-navalny-case-1781882
  • Peplow M. Nerve Agent Attack Used ‘Novichok’ Poison. C&EN Glob. Enterp. 2018;96(12):3
  • Nakagawa T, Tu AT. Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia. Forensic Toxicology. 2018July1;36(2):542–544. Springer Tokyo.
  • John H, van der Schans MJ, Koller M, et al. Fatal Sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic Toxicol. 2018;36(1):61–71.
  • Okumura T, Takasu N, Ishimatsu S, et al. Report on 640 victims of the Tokyo subway Sarin attack. Ann Emerg Med. 1996;28(2):129–135.
  • Kirlikovali KO, Chen Z, Islamoglu T, et al. Zirconium-based metal-organic frameworks for the catalytic hydrolysis of organophosphorus nerve agents. ACS Appl Mater Interfaces. 2020;12(13):14702–14720.
  • Emelianova A, Basharova EA, Kolesnikov AL, et al. Force fields for molecular modeling of Sarin and its simulants: DMMP and DIMP. J Phys Chem B. 2021;125(16):4086–4098.
  • Ellaby RJ, Clark ER, Allen N, et al. Identification of organophosphorus simulants for the development of next-generation detection technologies. Org Biomol Chem. 2021;19(9):2008–2014.
  • Bartelt-Hunt SL, Knappe DRU, Barlaz MA. A review of chemical warfare agent simulants for the study of environmental behavior. Crit Rev Environ Sci Technol. 2008;38(2):112–136.
  • Sambrook MR, Vincent JC, Ede JA, et al. Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent Soman (GD) and commonly used simulants. RSC Adv. 2017;7(60):38069–38076.
  • Sambrook MR, Gass IA, Cragg PJ. Spectroscopic and inclusion properties of G-series chemical warfare agents and their simulants: a DFT study. Supramol Chem. 2018;30(3):206–217.
  • Ede JA, Cragg PJ, Sambrook MR. Comparison of binding affinities of water-soluble calixarenes with the organophosphorus nerve agent Soman (GD) and commonly-used nerve agent simulants. Molecules. 2018;23(1):207.
  • Williams GT, Haynes CJE, Fares M, et al. Advances in applied supramolecular technologies. Chem Soc Rev. 2021;50(4):2737–2763.
  • Sambrook MR, Notman S. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing. Chem Soc Rev. 2013;42(24):9251–9267.
  • Hiscock JR, Sambrook MR, Cranwell PB, et al. Tripodal molecules for the promotion of phosphoester hydrolysis. Chem Commun. 2014;50(47):6217–6220.
  • Hiscock JR, Sambrook MR, Ede JA, et al. Disruption of a binary organogel by the chemical warfare agent Soman (GD) and common organophosphorus simulants. J Mater Chem A. 2015;3(3):1230–1234.
  • Hiscock JR, Kirby IL, Herniman J, et al. Supramolecular gels for the remediation of reactive organophosphorus compounds. RSC Adv. 2014;4(85):45517–45521.
  • Hiscock JR, Sambrook MR, Wells NJ, et al. Detection and remediation of organophosphorus compounds by oximate containing organogels. Chem Sci. 2015;6(10):5680–5684.
  • Taylor CGP, Piper JR, Ward MD. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response. Chem Commun. 2016;52(37):6225–6228.
  • Taylor CGP, Metherell AJ, Argent SP, et al. Coordination-cage-catalysed hydrolysis of organophosphates: cavity- or surface-based? Chem - A Eur J. 2020;26(14):3065–3073.
  • Sambrook MR, Althoff MA, Karaghiosoff KL, et al. Coordination behavior of organothiophosphate ligands towards trivalent lanthanide complexes and potential use as V-series chemical warfare agent simulants. J Coord Chem. 2019;72(12):2115–2126.
  • Ruffley JP, Goodenough I, Luo TY, et al. Design, synthesis, and characterization of metal-organic frameworks for enhanced sorption of chemical warfare agent simulants. J Phys Chem C. 2019;123(32):19748–19758.
  • Lavoie J, Srinivasan S, Nagarajan R. Using cheminformatics to find simulants for chemical warfare agents. J Hazard Mater. 2011;194:85–91.
  • Mendonca ML, Snurr RQ. Screening for improved nerve agent simulants and insights into organophosphate hydrolysis reactions from DFT and QSAR modeling. Chemistry. 2019;25(39):9217–9229.
  • Mendonca ML, Snurr RQ. Screening for improved nerve agent simulants and insights into organophosphate hydrolysis reactions from DFT and QSAR modeling. Chem A Eur J. 2019;25(39):9118.
  • White LJ, Wells NJ, Blackholly LR, et al. Towards quantifying the role of hydrogen bonding within amphiphile self-association and resultant aggregate formation. Chem Sci. 2017;8(11):7620–7630.
  • Tyuleva SN, Allen N, White LJ, et al. Approach to the design of novel amphiphiles with antibacterial properties against MSRA. Chem Commun. 2019;55(1):95–98.
  • Allen N, White LJ, Boles JE, et al. Towards the prediction of antimicrobial efficacy for hydrogen bonded, self-associating amphiphiles. ChemMedChem. 2020;15(22):2193–2205.
  • Beer S, Prasad GK, Pandey KS, et al. Decontamination of chemical warfare agents. Def. Sci. J. 2010;60(4):428–441
  • Altmann H-J, Richardt A Decontamination of chemical warfare agents. Decontam. Warf. Agents Enzym. Methods Remov. B/C Weapons. 2008, 83–115.
  • Panmand DS, Tiwari AD, Panda SS, et al. New benzotriazole-based reagents for the phosphonylation of various N-, O-, and S-Nucleophiles. Tetrahedron Lett. 2014;55(43):5898–5901.
  • Huang H, Ash J, Kang JY. Tf2O-Promoted activating strategy of phosphate analogues: synthesis of mixed phosphates and phosphinate. Org Lett. 2018;20(16):4938–4941.
  • Feng S, Li J, Wei J. Ionic liquid brush as an efficient and reusable heterogeneous catalytic assembly for the tosylation of phenols and alcohols in neat water. New J Chem. 2017;41(12):4743–4746.
  • Schoonover DV, Gibson HW. Facile removal of tosyl chloride from tosylates using cellulosic materials, e.g., filter paper. Tetrahedron Lett. 2017;58(3):242–244.
  • Chang JWW, Chia EY, Chai CLL, et al. Scope of direct arylation of fluorinated aromatics with Aryl Sulfonates. Org Biomol Chem. 2012;10(11):2289–2299.
  • Noji T, Fujiwara H, Okano K, et al. Synthesis of substituted indoline and Carbazole by Benzyne-Mediated cyclization-functionalization. Org Lett. 2013;15(8):1946–1949.
  • Ortega N, Feher-Voelger A, Brovetto M, et al. Iron(III)-Catalyzed halogenations by substitution of sulfonate esters. Adv Synth Catal. 2011;353(6):963–972.
  • Busschaert N, Kirby IL, Young S, et al. Squaramides as potent transmembrane anion transporters. Angew Chemie Int Ed. 2012;51(18):4426–4430.
  • Chen YF, Kao CL, Lee WK, et al. 13C-Isotope labeled surrogate for estimating organophosphorus pesticides in agricultural products by gas chromatography-mass spectrometry. J Chin Chem Soc. 2016;63(9):751–757.
  • Ma W, Mt K, Bm H, et al. Strategies to protect the health of deployed U.S. Forces: Force Protection and Decontamination, 1999.
  • Romano J Jr, Salem A, Lukey H, et al. Chemical warfare agents: chemistry, pharmacology, toxicology, and therapeutics. 2nd ed. CRC Press: USA; 2007.
  • Jang YJ, Kim K, Tsay OG, et al. Destruction and detection of chemical warfare agents. Chem Rev. 2015;115(24):5345–5403.
  • Farquharson S, Inscore FE, Christesen S. Detecting chemical agents and their hydrolysis products in water. Top Appl Phys. 2006;103:447–461.
  • Wilson C, Cooper NJ, Briggs ME, et al. Investigating the breakdown of the nerve agent simulant Methyl Paraoxon and chemical warfare agents GB and VX using nitrogen containing bases. Org Biomol Chem. 2018;16(47):9285–9291.
  • R: The R project for statistical computing. [cited 2021 May 24https://www.r-project.org
  • Doyle AG, Jacobsen EN. Small-Molecule H-Bond donors in asymmetric catalysis. Chem Rev. 2007;107(12):5713–5743.
  • Madarász Á, Dósa Z, Varga S, et al. Thiourea derivatives as brønsted acid organocatalysts. ACS Catal. 2016;6(7):4379–4387.
  • Serdyuk OV, Heckel CM, Tsogoeva SB. Bifunctional primary Amine-Thioureas in asymmetric organocatalysis. Organic and Biomolecular Chemistry. 2013;11(41):7051–7071
  • de Villegas D, Gálvez MD, Etayo JA, et al. Advances in enantioselective organocatalyzed anhydride desymmetrization and its application to the synthesis of valuable enantiopure compounds. Chem Soc Rev. 2011;40(11):5564–5587.
  • Taylor MS, Jacobsen EN Asymmetric catalysis by Chiral Hydrogen-Bond donors. Angewandte Chemie - International Edition., 2006, 1520–1543.