155
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer

, , , &
Pages 619-626 | Received 18 Feb 2009, Accepted 15 May 2009, Published online: 10 Jul 2009

References

  • Agostinis P, Vantieghem A, Merlevede W, De Witte PAM. (2002). Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol, 34, 221–241.
  • Allison RR, Mota HC, Bagnato VS, Sibata CH. (2008). Bio-nanotechnology and photodynamic therapy―State of the art review. Photodiagn Photodyn Ther, 5, 19–28.
  • Aveline BM, Hasan T, Redmond RW. (1995). The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPDMA). J Photochem Photobiol B, 30, 161–169.
  • Campo MA, Gabriel D, Kucera P, Gurny R, Lange N. (2007). Polymeric photosensitizer prodrugs for photodynamic therapy. Photochem Photobiol, 83, 958–965.
  • Chen J, Stefflova K, Niedre MJ, Wilson BC, Chance B, Glickson JD, Zheng G. (2004). Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J Am Chem Soc, 126, 11450–11451.
  • Clo E, Snyder JW, Ogilby PR, Gothelf KV. (2007). Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. Chembiochem, 8, 475–481.
  • Clo E, Snyder JW, Voigt NV, Ogilby PR, Gothelf KV. (2006). DNA-programmed control of photosensitized singlet oxygen production. J Am Chem Soc, 128, 4200–4201.
  • D’Hallewin MA, Bezdetnaya L, Guillemin F. (2002). Fluorescence detection of bladder cancer: a review. Eur Urol, 42, 417–425.
  • Davda J, Labhasetwar V. (2002). Characterization of nanoparticle uptake by endothelial cells. Int J Pharm, 233, 51–59.
  • Derycke AS, de Witte PA. (2004). Liposomes for photodynamic therapy. Adv Drug Deliv Rev, 56, 17–30.
  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res, 14, 1568–1573.
  • Dolmans DEJG, Fukumura D, Jain RK. (2003). Photodynamic therapy for cancer. Nat Rev Cancer, 3, 380–387.
  • Etzlstorfer C, Falk H. (2000). Concerning the association of hypericin tautomers and their hypericinate ions. Monatshefte für Chemie, 131, 333–340.
  • Falk H, Meyer J. (1994). On the homo- and heteroassociation of hypericin. Monatshefte für Chemie, 125, 753–762.
  • Gabriel D, Campo MA, Gurny R, Lange N. (2007). Tailoring protease-sensitive photodynamic agents to specific disease-associated enzymes. Bioconjug Chem, 18, 1070–1077.
  • Gaumet M, Gurny R, Delie F. (2009). Localization and quantification of biodegradable particles in an intestinal cell model: The influence of particle size. Eur J Pharm Sci, 36, 465–473.
  • Hamblin MR, Miller JL, Rizvi I, Loew HG, Hasan T. (2003). Pegylation of charged polymer-photosensitiser conjugates: effects on photodynamic efficacy. Br J Cancer, 89, 937–943.
  • Hamblin MR, Miller JL, Rizvi I, Ortel B, Maytin EV, Hasan T. (2001). Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res, 61, 7155–7162.
  • Hopper C. (2000). Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol, 1, 212–219.
  • Huygens A, Kamuhabwa AR, de Witte PA. (2005). Stability of different formulations and ion pairs of hypericin. Eur J Pharm Biopharm, 59, 461–468.
  • Iyer AK, Khaled G, Fang J, Maeda H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today, 11, 812–818.
  • Jocham D, Stepp H, Waidelich R. (2007). Photodynamic diagnosis in urology: state-of-the-art. Eur Urol, 53, 1138–1150.
  • Kamuhabwa A, Agostinis P, Ahmed B, Landuyt W, Van Cleynenbreugel B, Van Poppel H, De Witte P. (2004). Hypericin as a potential phototherapeutic agent in superficial transitional cell carcinoma of the bladder. Photochem Photobiol Sci, 3, 772–780.
  • Komagoe K, Tamagake K, Katsu T. (2006). The influence of aggregation of porphyrins on the efficiency of photogeneration of hydrogen peroxide in aqueous solution. Chem Pharm Bull (Tokyo), 54, 1004–1009.
  • Konan YN, Berton M, Gurny R, Allemann E. (2003a). Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci, 18, 241–249.
  • Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allemann E. (2003b). Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm, 55, 115–124.
  • Konan YN, Gurny R, Allemann E. (2002). State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B, 66, 89–106.
  • Konan-Kouakou YN, Boch R, Gurny R, Allemann E. (2005). In vitro and in vivo activities of verteporfin-loaded nanoparticles. J Control Release, 103, 83–91.
  • Lavie G, Mazur Y, Lavie D, Meruelo D. (1995). The chemical and biological properties of hypericin - A Compound with a broad-spectrum of biological activities. Med Res Rev, 15, 111–119.
  • McCarthy JR, Perez JM, Bruckner C, Weissleder R. (2005). Polymeric nanoparticle preparation that eradicates tumors. Nano Lett, 5, 2552–2556.
  • Mosinger J, Mosinger B. (1995). Photodynamic sensitizers assay: rapid and sensitive iodometric measurement. Experientia, 51, 106–109.
  • Oba T. (2007). Photosensitizer nanoparticles for photodynamic therapy. Curr Bioact Compd, 3, 239–251.
  • Qaddoumi MG, Ueda H, Yang J, Davda J, Labhasetwar V, Lee VH. (2004). The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res, 21, 641–648.
  • Rijcken CJ, Hofman JW, van Zeeland F, Hennink WE, van Nostrum CF. (2007). Photosensitiser-loaded biodegradable polymeric micelles: preparation, characterisation and in vitro PDT efficacy. J Control Release, 124, 144–153.
  • Saw CL, Olivo M, Soo KC, Heng PW. (2005). Delivery of hypericin for photodynamic applications. Cancer Lett, 241, 23–30.
  • Schneider R, Tirand L, Frochot C, Vanderesse R, Thomas N, Gravier J, Guillemin F, Barberi-Heyob M. (2006). Recent improvements in the use of synthetic peptides for a selective photodynamic therapy. Anticancer Agents Med Chem, 6, 469–488.
  • Sharman WM, Allen CM, van Lier JE. (1999). Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today, 4, 507–517.
  • Sharman WM, van Lier JE, Allen CM. (2004). Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev, 56, 53–76.
  • Smith RP. (2002). Photodynamic therapy. Curr Probl Cancer, 26, 67–108.
  • Solban N, Rizvi I, Hasan T. (2006). Targeted photodynamic therapy. Lasers Surg Med, 38, 522–531.
  • Tanielian C, Schweitzer C, Mechin R, Wolff C. (2001). Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radic Biol Med, 30, 208–212.
  • Theodossiou T, Spiro MD, Jacobson J, Hothersall JS, Macrobert AJ. (2004). Evidence for intracellular aggregation of hypericin and the impact on its photocytotoxicity in PAM 212 murine keratinocytes. Photochem Photobiol, 80, 438–443.
  • Triesscheijn M, Baas P, Schellens JHM, Stewart FA. (2006). Photodynamic therapy in oncology. Oncologist, 11, 1034–1044.
  • Van de Putte M, Roskams T, Bormans G, Verbruggen A, de Witte PA. (2006). The impact of aggregation on the biodistribution of hypericin. Int J Oncol, 28, 655–660.
  • van Dongen GA, Visser GW, Vrouenraets MB. (2004). Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev, 56, 31–52.
  • van Nostrum CF. (2004). Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev, 56, 9–16.
  • Verma S, Watt GM, Mai Z, Hasan T. (2007). Strategies for enhanced photodynamic therapy effects. Photochem Photobiol, 83, 996–1005.
  • Wynn JL, Cotton TM. (1995). Spectroscopic properties of hypericin in solution and at surfaces. J Phys Chem, 99, 4317–4323.
  • Zeisser-Labouèbe M, Lange N, Gurny R, Delie F. (2006a). Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm, 326, 174–181.
  • Zeisser-Labouèbe M, Vargas A, Delie F. (2006b). Nanoparticles for photodynamic therapy of cancer. In: Kumar CS (ed.), Nanomaterials for Cancer Therapy (Vol. 6, pp. 40–86 ). Weinheim: Wiley-VCH.
  • Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC. (2007). Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc Natl Acad Sci USA, 104, 8989–8994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.