956
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Factors influencing the nuclear targeting ability of nuclear localization signals

, , , , , , & show all
Pages 927-933 | Received 24 Jan 2016, Accepted 12 Apr 2016, Published online: 24 May 2016

References

  • Mastrobattista E, van der Aa MA, Hennink WE, Crommelin DJ. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 2006;5:115–21.
  • Lee J, Jung J, Kim Y, et al. Gene delivery of PAMAM dendrimer conjugated with the nuclear localization signal peptide originated from fibroblast growth factor 3. Int J Pharm 2014;459:10–18.
  • Aied A, Greiser U, Pandit A, Wang W. Polymer gene delivery: overcoming the obstacles. Drug Discov Today 2013;18:1090–8.
  • Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther 2002;9:157–67.
  • Labat-Moleur F, Steffan AM, Brisson C, et al. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther 1996;3:1010–17.
  • Xavier J, Singh S, Dean DA, et al. Designed multi-domain protein as a carrier of nucleic acids into cells. J Control Release 2009;133:154–60.
  • Pollard HELE, Remy J, Loussouarn G, et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 1998;273:7507–11.
  • Pouton C, Wagstaff K, Roth D, et al. Targeted delivery to the nucleus. Adv Drug Deliv Rev 2007;59:698–717.
  • Ludtke JJ, Zhang G, Sebestyen MG, Wolff JA. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J Cell Sci 1999;112:2033–41.
  • Lukacs GL, Haggie P, Seksek O, et al. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 2000;275:1625–9.
  • Yameen B, Choi WI, Vilos C, et al. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014;190:485–99.
  • Jans DA, Chan CK, Huebner S. Signals mediating nuclear targeting and their regulation: application in drug delivery. Med Res Rev 1998;18:189–223.
  • Robbins J, Dilworth SM, Laskey RA, Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 1991;64:615–23.
  • VW, Pollard WM, Michael S, Nakielny, et al. A novel receptor-mediated nuclear protein import pathway. Cell 1996;86:985–94.
  • Yao J, Fan Y, Li Y, Huang L. Strategies on the nuclear-targeted delivery of genes. J Drug Target 2015;21:926–39.
  • Soniat M, Chook YM. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem J 2015;468:353–62.
  • Xu D, Farmer A, Chook YM. Recognition of nuclear targeting signals by Karyopherin-β proteins. Curr Opin Struct Biol 2010;20:782–90.
  • Twyffels L, Gueydan C, Kruys V. Transportin-1 and transportin-2: protein nuclear import and beyond. FEBS Lett 2014;588:1857–68.
  • Branden LJ, Mohamed AJ, Smith CI. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 1999;17:784–7.
  • Yi W, Yang J, Li C, et al. Enhanced nuclear import and transfection efficiency of TAT peptide-based gene delivery systems modified by additional nuclear localization signals. Bioconjug Chem 2012;23:125–34.
  • Subramanian A, Ranganathan P, Diamond SL. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 1999;17:873–7.
  • Baoum A, Xie S, Fakhari A, Berkland C. “Soft” calcium crosslinks enable highly efficient gene transfection using TAT peptide. Pharm Res 2009;26:2619–29.
  • Lange A, Mills RE, Lange CJ, et al. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 2007;282:5101–5.
  • Stewart M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 2007;8:195–208.
  • Marfori M, Mynott A, Ellis JJ, et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta 2011;1813:1562–77.
  • Lam AP, Dean DA. Progress and prospects: nuclear import of nonviral vectors. Gene Ther 2010;17:439–47.
  • Lanford RE, Kanda P, Kennedy RC. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 1986;46:575–82.
  • Bremner KH, Seymour LW, Logan A, Read ML. Factors influencing the ability of nuclear localization sequence peptides to enhance nonviral gene delivery. Bioconjug Chem 2004;15:152–61.
  • Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 1999;96:91–6.
  • Van der Aa MAEM, Koning GA, D'Oliveira C, et al. An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. J Gene Med 2005;7:208–17.
  • Neves C, Byk G, Scherman D, Wils P. Coupling of a targeting peptide to plasmid DNA by covalent triple helix formation. FEBS Lett 1999;453:41–5.
  • Roulon T, Hélène C, Escudé C. Coupling of a targeting peptide to plasmid DNA using a new type of padlock oligonucleotide. Bioconjug Chem 2002;13:1134–9.
  • Collas P, Husebye H, Alestrom P. The nuclear localization sequence of the SV40 T antigen promotes transgene uptake and expression in zebrafish embryo nuclei. Transgenic Res 1996;5:451–8.
  • Yoo HS, Jeong SY. Nuclear targeting of non-viral gene carriers using psoralen-nuclear localization signal (NLS) conjugates. Eur J Pharm Biopharm 2007;66:28–33.
  • McCarthy HO, Wang Y, Mangipudi SS, Hatefi A. Advances with the use of bio-inspired vectors towards creation of artificial viruses. Exp Opin Drug Deliv 2010;7:497–512.
  • Opanasopit P, Rojanarata T, Apirakaramwong A, et al. Nuclear localization signal peptides enhance transfection efficiency of chitosan/DNA complexes. Int J Pharm 2009;382:291–5.
  • Jeon O, Lim H, Lee M, et al. Poly(L-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. J Drug Target 2015;15:190–8.
  • Park E, Cho H, Takimoto K. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine. Cytotherapy 2015;17:536–42.
  • Ren T, Li L, Cai X, et al. Engineered polyethylenimine/graphene oxide nanocomposite for nuclear localized gene delivery. Polymer Chem 2012;3:2561–9.
  • Parelkar SS, Letteri R, Chan-Seng D, et al. Polymer-peptide delivery platforms: effect of oligopeptide orientation on polymer-based DNA delivery. Biomacromolecules 2014;15:1328–36.
  • Hu Q, Wang J, Shen J, et al. Intracellular pathways and nuclear localization signal peptide-mediated gene transfection by cationic polymeric nanovectors. Biomaterials 2012;33:1135–45.
  • Miller AM, Dean DA. Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev 2009;61:603–13.
  • Plank C, Tang MX, Wolfe AR, Szoka FJ. Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum Gene Ther 1999;10:319–32.
  • Collins E, Birchall JC, Williams JL, Gumbleton M. Nuclear localisation and pDNA condensation in non-viral gene delivery. J Gene Med 2007;9:265–74.
  • Yin J, Meng X, Zhang S, et al. The effect of a nuclear localization sequence on transfection efficacy of genes delivered by cobalt(II)–polybenzimidazole complexes. Biomaterials 2012;33:7884–94.
  • Fontes MR, Teh T, Jans D, et al. Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. J Biol Chem 2003;278:27981–7.
  • Fontes MR, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 2000;297:1183–94.
  • Kosugi S, Hasebe M, Matsumura N, et al. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 2009;284:478–85.
  • Cherezova L, Burnside KL, Rose TM. Conservation of complex nuclear localization signals utilizing classical and non-classical nuclear import pathways in LANA homologs of KSHV and RFHV. PLoS One 2011;6:e18920.
  • Kalderon D, Richardson WD, Markham AF, Smith AE. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 1984;311:33–8.
  • Chaudhary SC, Cho M, Nguyen TT, et al. A putative pH-dependent nuclear localization signal in the juxtamembrane region of c-Met. Exp Mol Med 2014;46:e119.
  • Moriyama T, Sangel P, Yamaguchi H, et al. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box. Biochem Biophys Res Commun 2015;462:201–7.
  • Xiong J, Wang Y, Gong Z, et al. Identification of a functional nuclear localization signal within the human USP22 protein. Biochem Biophys Res Commun 2014;449:14–18.
  • Prüfer K, Boudreaux J. Nuclear localization of liver X receptor alpha and beta is differentially regulated. J Cell Biochem 2007;100:69–85.
  • Eguchi A, Furusawa H, Yamamoto A, et al. Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles. J Control Release 2005;104:507–19.
  • Hodel AE, Harreman MT, Pulliam KF, et al. Nuclear localization signal receptor affinity correlates with in vivo localization in saccharomyces cerevisiae. J Biol Chem 2006;281:23545–56.
  • Marfori M, Lonhienne TG, Forwood JK, Kobe B. Structural basis of high-affinity nuclear localization signal interactions with importin-α. Traffic 2012;13:532–48.
  • Canine BF, Wang Y, Hatefi A. Biosynthesis and characterization of a novel genetically engineered polymer for targeted gene transfer to cancer cells. J Control Release 2009;138:188–96.
  • Niu C, Zhang J, Gao F, et al. FUS-NLS/transportin 1 complex structure provides insights into the nuclear targeting mechanism of FUS and the implications in ALS. PLoS One 2012;7:e47056.
  • Zhang ZC, Chook YM. Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the fused in sarcoma protein (FUS). Proc Natl Acad Sci USA 2012;109:12017–21.
  • Chang C, Couñago RM, Williams SJ, et al. Distinctive conformation of minor site-specific nuclear localization signals bound to importin-α. Traffic 2013;14:1144–54.
  • Conti E, Uy M, Leighton L, et al. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998;94:193–204.
  • Conti E, Kuriyan J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 2000;8:329–38.
  • Moon IJ, Kang H, Seu YB, et al. Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex. Int J Mol Med 2007;20:429–37.
  • Sturzu A, Heckl S. The fluorinated and chlorinated nuclear localization sequence of the SV 40 T antigen. Chem Biol Drug Des 2009;73:127–31.
  • Kim B, Kang H, Doh K, et al. Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery. Bioorg Med Chem Lett 2012;22:5415–18.
  • Wang H, Li C, Yi W, et al. Targeted delivery in breast cancer cells via iodine: nuclear localization sequence conjugate. Bioconjug Chem 2011;22:1567–75.
  • Escriou V, Carri E, Re M, et al. NLS bioconjugates for targeting therapeutic genes to the nucleus. Adv Drug Deliv Rev 2003;55:295–306.
  • Sebestyen MG, Ludtke JJ, Bassik MC, et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 1998;16:80–5.
  • Ciolina C, Byk G, Blanche F, et al. Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug Chem 1999;10:49–55.
  • Vázquez E, Ferrer-Miralles N, Villaverde A. Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discov Today 2008;13:1067–74.
  • Hodel MR, Corbett AH, Hodel AE. Dissection of a nuclear localization signal. J Biol Chem 2001;276:1317–25.
  • Lange A, McLane LM, Mills RE, et al. Expanding the definition of the classical bipartite nuclear localization signal. Traffic 2010;11:311–23.
  • Nagasaki T, Myohoji T, Tachibana T, et al. Can nuclear localization signals enhance nuclear localization of plasmid DNA? Bioconjug Chem 2003;14:282–6.
  • Boulanger C, Di Giorgio C, Vierling P. Synthesis of acridine-nuclear localization signal (NLS) conjugates and evaluation of their impact on lipoplex and polyplex-based transfection. Eur J Med Chem 2005;40:1295–306.
  • Chu M, Dong C, Zhu H, et al. Biocompatible polyethylenimine-graft-dextran catiomer for highly efficient gene delivery assisted by a nuclear targeting ligand. Polymer Chem 2013;4:2528.
  • Katas H, Abdul Ghafoor Raja M, Ee LC. Comparative characterization and cytotoxicity study of TAT-peptide as potential vectors for siRNA and dicer-substrate siRNA. Drug Dev Ind Pharm 2014;40:1443–50.
  • Yamano S, Dai J, Hanatani S, et al. Long-term efficient gene delivery using polyethylenimine with modified TAT peptide. Biomaterials 2014;35:1705–15.
  • Yang J, Lei Q, Han K, et al. Reduction-sensitive polypeptides incorporated with nuclear localization signal sequences for enhanced gene delivery. J Mater Chem 2012;22:13591.
  • Wang H, Chen J, Sun Y, et al. Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release 2011;155:26–33.
  • Trabulo S, Mano M, Faneca H, et al. S413-PV cell penetrating peptide and cationic liposomes act synergistically to mediate intracellular delivery of plasmid DNA. J Gene Med 2008;10:1210–22.
  • Zhong J, Li L, Zhu X, et al. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials 2015;65:43–55.
  • Miller A, Crumbley C, Prüfer K. The N-terminal nuclear localization sequences of liver X receptors α and β bind to importin α and are essential for both nuclear import and transactivating functions. Int J Biochem Cell Biol 2009;41:834–43.
  • Marshall KS, Cohen MJ, Fonseca GJ, et al. Identification and characterization of multiple conserved nuclear localization signals within adenovirus E1A. Virology 2014;454-455:206–14.
  • Timney BL, Tetenbaum-Novatt J, Agate DS, et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J Cell Biol 2006;175:579–93.
  • Wu J, Corbett AH, Berland KM. The intracellular mobility of nuclear import receptors and NLS cargoes. Biophys J 2009;96:3840–9.
  • Liang Y, Hetzer MW. Functional interactions between nucleoporins and chromatin. Curr Opin Cell Biol 2011;23:65–70.
  • Pascual-Garcia P, Capelson M. Nuclear pores as versatile platforms for gene regulation. Curr Opin Genet Dev 2014;25:110–17.
  • Akhtar A, Gasser SM. The nuclear envelope and transcriptional control. Nat Rev Genet 2007;8:507–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.