1,612
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Evolution of phage display technology: from discovery to application

, , , , , & show all
Pages 216-224 | Received 04 May 2016, Accepted 05 Nov 2016, Published online: 21 Nov 2016

References

  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985;228:1315–17.
  • McCafferty G, Dooley J. Involuntary outpatient commitment: an update. Mental Phys Disabil Law Rep 1990;14:277–87.
  • Huber KE, Waldor MK. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 2002;417:656–9.
  • Haq IU, Chaudhry WN, Akhtar MN, et al. Bacteriophages and their implications on future biotechnology: a review. Virol J 2012;9:1.
  • Russel M, Model P. Filamentous phage. In: Calendar RC, Abedon ST, eds. The bacteriophages. 2nd ed. New York (NY): Oxford University Press; 2006:146–60.
  • Deng YM, Liu CQ, Dunn NW. Genetic organization and functional analysis of a novel phage abortive infection system, AbiL, from Lactococcus lactis. J Biotechnol 1999;67:135–49.
  • Hofschneider PV, Preuss A. M 13 bacteriophage liberation from intact bacteria as revealed by electron microscopy. J Mol Biol 1963;7:450–1.
  • Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptides on a filamentous bacteriophage: peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol 1991;220:821–7.
  • Welsh LC, Symmons MF, Sturtevant JM, et al. Structure of the capsid of Pf3 filamentous phage determined from X-ray fibre diffraction data at 3.1 +à resolution. J Mol Biol 1998;283:155–77.
  • Wickner W. Asymmetric orientation of phage M13 coat protein in Escherichia coli cytoplasmic membranes and in synthetic lipid vesicles. Proc Natl Acad Sci USA 1976;73:1159–63.
  • Endemann H, Model P. Location of filamentous phage minor coat proteins in phage and in infected cells. J Mol Biol 1995;250:496–506.
  • Gao C, Mao S, Lo CH, et al. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci USA 1999;96:6025–30.
  • Nilsson N, Malmborg AC, Borrebaeck CA. The phage infection process: a functional role for the distal linker region of bacteriophage protein 3. J Virol 2000;74:4229–35.
  • Riechmann L, Holliger P. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell 1997;90:351–60.
  • Ray DS. Replication of bacteriophage M13. II. The role of replicative forms in single-strand synthesis. J Mol Biol 1969;43:631–43.
  • Russel M, Lowman HB, Clackson T. Introduction to phage biology and phage display. Phage Display 2004;266:1–26.
  • Webster RE. Biology of the filamentous bacteriophage. Phage Display Pept Prot 1996;1–20.
  • Jespers LS, Messens JH, Keyser AD, et al. Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Nat Biotechnol 1995;13:378–82.
  • Tikunova NV, Morozova VV. Phage display on the base of filamentous bacteriophages: application for recombinant antibodies selection. Acta Naturae 2009;1:20.
  • Huang JX, Bishop-Hurley SL, Cooper MA. Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob Agents Chemother 2012;56:4569–82.
  • Low NM, Holliger P, Winter G. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 1996;260:359–68.
  • de Berardinis P, Haigwood NL. New recombinant vaccines based on the use of prokaryotic antigen-display systems. Expert Rev Vaccines 2004;3:673–9.
  • Rowley MJ, O’Connor K, Wijeyewickrema L. Phage display for epitope determination: a paradigm for identifying receptor–ligand interactions. Biotechnol Ann Rev 2004;10:151–88.
  • Fernandez-Gacio A, Uguen M, Fastrez J. Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 2003;21:408–14.
  • Knudsen L, Hansen BF, Jensen P, et al. Agonism and antagonism at the insulin receptor. PLoS One 2012;7:e51972.
  • Buss NA, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 2012;12:615–22.
  • Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015;67:95–106.
  • Cabilly S, Heyneker HL, Holmes WE, et al. Immunology, vectors, dna. 3-28-. Google Patents; 1989.
  • Marks JD, Hoogenboom HR, Bonnert TP, et al. By-passing immunization: human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991;222:581–97.
  • Edwards BM, Barash SC, Main SH, et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol 2003;334:103–18.
  • Jespers LS, Roberts A, Mahler SM, et al. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Nat Biotechnol 1994;12:899–903.
  • Dienstmann R, Tabernero J. Necitumumab, a fully human IgG1 mAb directed against the EGFR for the potential treatment of cancer. Curr Opin Investig Drugs 2010;11:1434–41.
  • Kummerfeldt CE. Raxibacumab: potential role in the treatment of inhalational anthrax. Infect Drug Resist 2014;7:101.
  • Behrens F, Tak PP, Østergaard M, et al. MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann Rheum Dis 2015;74:1058–64.
  • Blanchard C, Mishra A, Saito-Akei H, et al. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354). Clin Exp Allergy 2005;35:1096–103.
  • Belyanskaya LL, Marti TM, Hopkins-Donaldson S, et al. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Mol Cancer 2007;6:1.
  • Greco FA, Bonomi P, Crawford J, et al. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 2008;61:82–90.
  • Kimball AB, Gordon KB, Langley RG, et al. Safety and efficacy of ABT-874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis: results of a randomized, placebo-controlled, phase 2 trial. Arch Dermatol 2008;144:200–7.
  • Abou-Alfa GK, Capanu M, O’Reilly EM, et al. A phase II study of cixutumumab(IMC-A12, NSC742460) in advanced hepatocellular carcinoma. J Hepatol 2014;60:319–24.
  • Morris JC, Tan AR, Olencki TE, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One 2014;9:e90353.
  • Dantas-Barbosa C, de Macedo Brigido M, Maranhao AQ. Antibody phage display libraries: contributions to oncology. IJMS 2012;13:5420–40.
  • Panza F, Frisardi V, Imbimbo BP, et al. Monoclonal antibodies against β-amyloid (Aβ) for the treatment of Alzheimer’s disease: the Aβ target at a crossroads. Expert Opin Biol Ther 2011;11:679–86.
  • Omidfar K, Daneshpour M. Advances in phage display technology for drug discovery. Expert Opin Drug Discov 2015;10:651–69.
  • Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 2011;16:3675–700.
  • Vaughan TJ, Williams AJ, Pritchard K, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 1996;14:309–14.
  • Perelson AS, Oster GF. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self-discrimination. J Theoret Biol 1979;81:645–70.
  • de Haard HJ, Kazemier B, Koolen MJ, et al. Selection of recombinant, library-derived antibody fragments against p24 for human immunodeficiency virus type 1 diagnostics. Clin Diagn Lab Immunol 1998;5:636–44.
  • Griffiths AD, Williams SC, Hartley O, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 1994;13:3245.
  • Waterhouse P, Griffiths AD, Johnson KS, Winter G. Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucl Acids Res 1993;21:2265–6.
  • Hust M, Dübel S. Mating antibody phage display with proteomics. Trends Biotechnol 2004;22:8–14.
  • de Haard HJ, van Neer N, Reurs A, et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 1999;274:18218–30.
  • Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 2005;23:344–8.
  • Pini A, Viti F, Santucci A, et al. Design and use of a phage display library human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 1998;273:21769–76.
  • Hoogenboom HR, Winter G. By-passing immunisation: human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 1992;227:381–8.
  • Nissim A, Hoogenboom HR, Tomlinson IM, et al. Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents. EMBO J 1994;13:692.
  • Byrne H, Conroy PJ, Whisstock JC, O’Kennedy RJ. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol 2013;31:621–32.
  • Bostrom J, Yu SF, Kan D, et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009;323:1610–14.
  • Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today 2015;20:838–47.
  • Cadwell RC, Joyce GF. Mutagenic PCR. PCR Methods Appl 1994;3:S136–S40.
  • Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity: mimicking affinity maturation. J Mol Biol 1992;226:889–96.
  • Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 1997;94:4937–42.
  • Marks JD, Griffiths AD, Malmqvist M, et al. By-passing immunization: building high affinity human antibodies by chain shuffling. Nat Biotechnol 1992;10:779–83.
  • Xia L, Zhang J, Cui C, et al. In vitro affinity maturation and characterization of anti-P24 antibody for HIV diagnostic assay. J Biochem 2015;158:531–8.
  • Barbas CF, Hu D, Dunlop N, et al. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc Natl Acad Sci USA 1994;91:3809–13.
  • Yang WP, Green K, Pinz-Sweeney S, et al. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol 1995;254:392–403.
  • Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 2006;11:905–10.
  • Vergote V, Burvenich C, Van de Wiele C, De Spiegeleer B. Quality specifications for peptide drugs: a regulatory‐pharmaceutical approach. J Pept Sci 2009;15:697–710.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today 2015;20:122–8.
  • Yang M, Frokjaer S. Novel formulation approaches for peptide and protein injectable. Deliv Technol Biopharm 2009;9–28.
  • Bussel JB, Kuter DJ, George JN, et al. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. N Engl J Med 2006;355:1672–81.
  • Herbst RS, Hong D, Chap L, et al. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol 2009;27:3557–65.
  • Wu B, Sun YN. Pharmacokinetics of Peptide-Fc fusion proteins. J Pharm Sci 2014;103:53–64.
  • Lock RL, Harry EJ. Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov 2008;7:324–38.
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010;9:117–28.
  • Houimel M, Corthesy-Theulaz I, Fisch I, et al. Selection of human single chain Fv antibody fragments binding and inhibiting Helicobacter pylori urease. Tumor Biol 2001;22:36–44.
  • Yacoby I, Shamis M, Bar H, et al. Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob Agents Chemother 2006;50:2087–97.
  • Molina-Lopez J, Sanschagrin F, Levesque RC. A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: the first committed step in peptidoglycan biosynthesis. Peptides 2006;27:3115–21.
  • Coelho EAF, Angel Chávez-Fumagalli M, Costa LE, et al. Theranostic applications of phage display to control leishmaniasis: selection of biomarkers for serodiagnostics, vaccination, and immunotherapy. Rev Soc Bras Med Trop 2015;48:370–9.
  • Bishop-Hurley SL, Rea PJ, McSweeney CS. Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial. Prot Eng Design Select 2010;23:gzq050.
  • Houimel M, Mach J-P, Corthesy-Theulaz I, et al. New inhibitors of Helicobacter pylori urease holoenzyme selected from phage-displayed peptide libraries. Eur J Biochem 1999;262:774–80.
  • Keller WC, Michetti P. Vaccination against Helicobacter pylori – an old companion of man. Expert Opin Biol Ther 2001;1:795–802.
  • Marks MI. Clinical significance of Staphylococcus aureus in cystic fibrosis. Infection 1990;18:53–6.
  • Appelbaum PC. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin Infect Dis 2007;45:S165–S70.
  • Chothia C, Lesk AM, Gherardi E, et al. Structural repertoire of the human VH segments. J Mol Biol 1992;227:799–817.
  • Yang G, Gao Y, Dong J, et al. A novel peptide isolated from phage library to substitute a complex system for a vaccine against staphylococci infection. Vaccine 2006;24:1117–23.
  • Chen Y, Liu B, Yang D, et al. Peptide mimics of peptidoglycan are vaccine candidates and protect mice from infection with Staphylococcus aureus. J Med Microbiol 2011;60:995–1002.
  • Rao SS, Mohan KVK, Gao Y, Atreya CD. Identification and evaluation of a novel peptide binding to the cell surface of Staphylococcus aureus. Microbiol Res 2013;168:106–12.
  • Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 1983;5:279–313.
  • Hakki M, Limaye AP, Kim HW, et al. Invasive Pseudomonas aeruginosa infections: high rate of recurrence and mortality after hematopoietic cell transplantation. Bone Marrow Transplant 2007;39:687–93.
  • Beckmann C, Brittnacher M, Ernst R, et al. Use of phage display to identify potential Pseudomonas aeruginosa gene products relevant to early cystic fibrosis airway infections. Infect Immun 2005;73:444–52.
  • Yuan Q, Wu Y, Wang Y, et al. Protective efficacy of a peptide derived from a potential adhesin of Pseudomonas aeruginosa against corneal infection. Exp Eye Res 2016;143:39–48.
  • Costa LE, Goulart LR, de Jesus Pereira NC, et al. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis. PLoS One 2014;9:e110014.
  • Toledo-Machado CM, Bueno LL, Menezes-Souza D, et al. Use of phage display technology in development of canine visceral leishmaniasis vaccine using synthetic peptide trapped in sphingomyelin/cholesterol liposomes. Parasit Vectors 2015;8:133.
  • Pauling L. Antibodies and specific biological forces. Endeavour 1948;7:43–53.
  • Jencks WP. Catalysis in chemistry and enzymology. New York: McGraw-Hill; 1969. Ref Type: Generic
  • Pollack SJ, Jacobs JW, Schultz PG. Selective chemical catalysis by an antibody. Science 1986;234:1570–3.
  • Gabibov AG, Friboulet A, Thomas D, et al. Antibody proteases: induction of catalytic response. Biochemistry (Moscow) 2002;67:1168–79.
  • Nevinsky GA, Favorova OO, Buneva VN, Catalytic antibodies: new characters in the protein repertoire. In: Golemis E, ed. Protein-protein interactions. A molecular cloning manual. New York: Cold Spring Harbor Lab Press; 2002. Ref Type: Generic.
  • Paul S, Massey R. Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Regul Peptides 1989;26:175.
  • Said SI. Vasoactive intestinal polypeptide (VIP) in asthmaa. Ann N Y Acad Sci 1991;629:305–18.
  • Padiolleau-Lefèvre S, Naya RB, Shahsavarian MA, et al. Catalytic antibodies and their applications in biotechnology: state of the art. Biotechnol Lett 2014;36:1369–79.
  • Kurkova IN, Smirnov IV, Belogurov AA, Jr., et al. Creation of catalytic antibodies metabolizing organophosphate compounds. Biochemistry 2012;77:1139–46.
  • Landry DW, Zhao K, Yang GX, et al. Antibody-catalyzed degradation of cocaine. Science 1993;259:1899–901.
  • Mets B, Winger G, Cabrera C, et al. A catalytic antibody against cocaine prevents cocaine’s reinforcing and toxic effects in rats. Proc Natl Acad Sci USA 1998;95:10176–81.
  • Yang 2, Chun J, Arakawa-Uramoto H, et al. Anti-cocaine catalytic antibodies: a synthetic approach to improved antibody diversity. J Am Chem Soc 1996;118:5881–90.
  • Saibi W, Abdeljalil S, Masmoudi K, Gargouri A. Biocatalysts: beautiful creatures. Biochem Biophys Res Commun 2012;426:289–93.
  • Krause I, Blank M, Shoenfeld Y. Idiotypic induction of autoimmunity. J Biol Regul Homeost Agents 1997;12:49–52.
  • Ali M, Hariharan AG, Mishra N, Jain S. Catalytic antibodies as potential therapeutics. Indian J Biotechnol 2009;8:253–8.
  • McKenzie KM, Mee JM, Rogers CJ, et al. Identification and characterization of single chain anti-cocaine catalytic antibodies. J Mol Biol 2007;365:722–31.
  • Mayorov AV, Amara N, Chang JY, et al. Catalytic antibody degradation of ghrelin increases whole-body metabolic rate and reduces refeeding in fasting mice. Proc Natl Acad Sci USA 2008;105:17487–92.
  • Baranova SV, Buneva VN, Nevinsky GA. Antibodies from the sera of HIV‐infected patients efficiently hydrolyze all human histones. J Mol Recogn 2016;29:346–62.
  • Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016;23:1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.