542
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Recent progress in drug delivery of pluronic P123: pharmaceutical perspectives

&
Pages 471-484 | Received 10 Sep 2016, Accepted 29 Jan 2017, Published online: 20 Feb 2017

References

  • Sastry NV, Hoffmann H. Interaction of amphiphilic block copolymer micelles with surfactants. Colloids Surf A Physicochem Eng Asp 2004;250:247–61.
  • Akash MS, Rehman K, Chen S. Pluronic F127-based thermosensitive gels for delivery of therapeutic proteins and peptides. Polym Rev 2014;54:573–97.
  • Akash MS, Rehman K, Chen S. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym Rev 2015;55:371–406.
  • Akash MS, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol 2016;21:367–78.
  • Akash MS, Rehman K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. J Control Release 2015;209:120–38.
  • Parmar A, Singh K, Bahadur A, et al. Interaction and solubilization of some phenolic antioxidants in Pluronic® micelles. Colloids Surf B Biointerfaces 2011;86:319–26.
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008;130:98–106.
  • Zhao L, Shi Y, Zou S, et al. Formulation and in vitro evaluation of quercetin loaded polymeric micelles composed of pluronic P123 and D-a-tocopheryl polyethylene glycol succinate. J Biomed Nanotechnol 2011;7:358–65.
  • Jindal N, Mehta SK. Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B Biointerfaces 2015;129:100–6.
  • Sakai T, Kurosawa H, Okada T, et al. Vesicle formation in mixture of a PEO-PPO-PEO block copolymer (Pluronic P123) and a nonionic surfactant (Span 65) in water. Colloids Surf A Physicochem Eng Asp 2011;389:82–9.
  • Chen S, Yang B, Guo C, et al. Spontaneous vesicle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. J Phys Chem B 2008;112:15659–65.
  • Han LM, Guo J, Zhang LJ, et al. Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with Pluronic P123. Acta Pharmacol Sin 2006;27:747–53.
  • Liu Z, Liu D, Wang L, et al. Docetaxel-loaded pluronic p123 polymeric micelles: in vitro and in vivo evaluation. Int J Mol Sci 2011;12:1684–96.
  • Wei Z, Hao J, Yuan S, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 2009;376:176–85.
  • Zhang W, Shi Y, Chen Y, et al. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur J Pharm Biopharm 2010;75:341–53.
  • Abdelbary GA, Tadros MI. Brain targeting of olanzapine via intranasal delivery of core-shell difunctional block copolymer mixed nanomicellar carriers: in vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int J Pharm 2013;452:300–10.
  • Zhao L, Du J, Duan Y, et al. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces 2012;97:101–8.
  • Wang G, Wang JJ, Tang XJ, et al. In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer. Nanomedicine 2016;12:1263–78.
  • Duan Y, Cai X, Du H, et al. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 2015;128:322–30.
  • Yang R, Zhang X, Li F, et al. Role of phospholipids and copolymers in enhancing stability and controlling degradation of intravenous lipid emulsions. Colloids Surf A Physicochem Eng Asp 2013;436:434–42.
  • Cai X, Liu M, Zhang C, et al. pH-responsive copolymers based on pluronic P123-poly(beta-amino ester): synthesis, characterization and application of copolymer micelles. Colloids Surf B Biointerfaces 2016;142:114–22.
  • Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier. Adv Drug Deliv Rev 2003;55:151–64.
  • Sun H, Meng Q, Tang S, et al. Inhibition of breast cancer metastasis by Pluronic copolymers with moderate hydrophilic-lipophilic balance. Mol Pharm 2015;12:3323–31.
  • Singh K, Marangoni DG. Synergistic interactions in the mixed micelles of cationic gemini with zwitterionic surfactants: the pH and spacer effect. J Colloid Interface Sci 2007;315:620–6.
  • John F, George J, Vartak SV, et al. Enhanced efficacy of pluronic copolymer micelle encapsulated SCR7 against cancer cell proliferation. Macromol Biosci 2015;15:521–34.
  • Wang Y, Li Y, Zhang L, et al. Pharmacokinetics and biodistribution of paclitaxel-loaded pluronic P105 polymeric micelles. Arch Pharm Res 2008;31:530–8.
  • Wang Y, Yu L, Han L, et al. Difunctional Pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 2007;337:63–73.
  • Yang L, Wu X, Liu F, et al. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm Res 2009;26:2332–42.
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004;96:273–83.
  • Bhattacharjee J, Verma G, Aswal VK, et al. Microstructure, drug binding and cytotoxicity of Pluronic P123–aerosol OT mixed micelles. RSC Adv 2013;3:23080–9.
  • Kabanov AV, Batrakova EV, Alakhov VY. An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers. J Control Release 2003;91:75–83.
  • Chaibundit C, Ricardo NM, Costa Fde M, et al. Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir 2007;23:9229–36.
  • Mohanty ME, Rao VJ, Mishra AK. A fluorescence study on the interaction of telmisartan in triblock polymers pluronic P123 and F127. Spectrochim Acta A Mol Biomol Spectrosc 2014;121:330–8.
  • Zhang W, Shi Y, Chen Y, et al. The potential of Pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials 2011;32:5934–44.
  • Wei Z, Yuan S, Hao J, et al. Mechanism of inhibition of P-glycoprotein mediated efflux by Pluronic P123/F127 block copolymers: relationship between copolymer concentration and inhibitory activity. Eur J Pharm Biopharm 2013;83:266–74.
  • Guan Y, Huang J, Zuo L, et al. Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism. Arch Pharm Res 2011;34:1719–28.
  • Lee ES, Oh YT, Youn YS, et al. Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Colloids Surf B Biointerfaces 2011;82:190–5.
  • Cha MH, Choi J, Choi BG, et al. Synthesis and characterization of novel thermo-responsive F68 block copolymers with cell-adhesive RGD peptide. J Colloid Interface Sci 2011;360:78–85.
  • Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz MJ, et al. Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids 2009;23:1096–102.
  • Yan A, Von Dem Bussche A, Kane AB, et al. Tocopheryl polyethylene glycol succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon N Y 2007;45:2463–70.
  • Gao Y, Li LB, Zhai G. Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf B Biointerfaces 2008;64:194–9.
  • Bansal T, Akhtar N, Jaggi M, et al. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today 2009;14:1067–74.
  • Zhao H, Yung LY. Addition of TPGS to folate-conjugated polymer micelles for selective tumor targeting. J Biomed Mater Res A 2009;91:505–18.
  • Collnot EM, Baldes C, Wempe MF, et al. Influence of vitamin E TPGS poly(ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers. J Control Release 2006;111:35–40.
  • Mandal AK, Sen Mojumdar S, Kumar Das A, et al. Effect of ionic liquid on diffusion in P123 gel: fluorescence correlation spectroscopy. Chemphyschem 2012;13:1942–8.
  • Hwang YJ, Oh C, Oh SG. Controlled release of retinol from silica particles prepared in O/W/O emulsion: the effects of surfactants and polymers. J Control Release 2005;106:339–49.
  • El-Setouhy DA, Basalious EB, Abdelmalak NS. Bioenhanced sublingual tablet of drug with limited permeability using novel surfactant binder and microencapsulated polysorbate: in vitro/in vivo evaluation. Eur J Pharm Biopharm 2015;94:386–92.
  • Liu Y, Feng L, Liu T, et al. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 2014;6:3231–42.
  • Lee ES, Oh KT, Kim D, et al. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J Control Release 2007;123:19–26.
  • Yin H, Lee ES, Kim D, et al. Physicochemical characteristics of pH-sensitive poly(L-histidine)-b-poly(ethylene glycol)/poly(L-lactide)-b-poly(ethylene glycol) mixed micelles. J Control Release 2008;126:130–8.
  • Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2001;46:125–48.
  • Chan A, Orme RP, Fricker RA, et al. Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 2013;65:497–514.
  • Fan J, Zeng F, Wu S, et al. Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules 2012;13:4126–37.
  • Yang YQ, Zhao B, Li ZD, et al. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(epsilon-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery. Acta Biomater 2013;9:7679–90.
  • Min KH, Kim JH, Bae SM, et al. Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 2010;144:259–66.
  • Little SR, Lynn DM, Ge Q, et al. Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci USA 2004;101:9534–9.
  • Lai TC, Kataoka K, Kwon GS. Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency. Biomaterials 2011;32:4594–603.
  • Kabanov AV, Lemieux P, Vinogradov S, et al. Pluronic block copolymers: novel functional molecules for gene therapy. Adv Drug Deliv Rev 2002;54:223–33.
  • Shen J, Yin Q, Chen L, et al. Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 2012;33:8613–24.
  • Ochietti B, Guerin N, Vinogradov SV, et al. Altered organ accumulation of oligonucleotides using polyethyleneimine grafted with poly(ethylene oxide) or pluronic as carriers. J Drug Target 2002;10:113–21.
  • Gaymalov ZZ, Yang Z, Pisarev VM, et al. The effect of the nonionic block copolymer pluronic P85 on gene expression in mouse muscle and antigen-presenting cells. Biomaterials 2009;30:1232–45.
  • Lemieux P, Guerin N, Paradis G, et al. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther 2000;7:986–91.
  • Vinogradov SV, Batrakova EV, Li S, et al. Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides. J Drug Target 2004;12:517–26.
  • Gu J, Hao J, Fang X, et al. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells. Colloids Surf B Biointerfaces 2016;140:83–93.
  • Kopecek J. Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 2013;65:49–59.
  • Ringsdorf H. Structure and properties of pharmacologically active polymers. Journal of Polymer Science: Polymer Symposia 1975;51:135–53.
  • Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 2008;60:886–98.
  • Posey JA, Saif MW, Carlisle R, et al. Phase 1 study of weekly polyethylene glycol-camptothecin in patients with advanced solid tumors and lymphomas. Clin Cancer Res 2005;11:7866–71.
  • Liu Z, Wang Y, Zhang J, et al. Pluronic P123-docetaxel conjugate micelles: synthesis, characterization, and antitumor activity. J Biomed Nanotechnol 2013;9:2007–16.
  • William WN, Jr., Heymach JV, Kim ES, et al. Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 2009;8:213–25.
  • Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006;103:6315–20.
  • Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49:6449–65.
  • Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther 2004;3:647–54.
  • Song H, He R, Wang K, et al. Anti-HIF-1alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials 2010;31:2302–12.
  • Coradini D, Pellizzaro C, Abolafio G, et al. Hyaluronic-acid butyric esters as promising antineoplastic agents in human lung carcinoma: a preclinical study. Invest New Drugs 2004;22:207–17.
  • Miletti-González KE, Chen S, Muthukumaran N, et al. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res 2005;65:6660–7.
  • Gu J, Fang X, Hao J, et al. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery. Biomaterials 2015;45:99–114.
  • Lee DE, Hong YD, Choi KH, et al. Preparation and evaluation of 99mTc-labeled cyclic arginine-glycine-aspartate (RGD) peptide for integrin targeting. Appl Radiat Isot 2010;68:1896–902.
  • Zhao W, Liu K, Chen S, et al. Polyethylenimine derivate conjugated with RGD-TAT-NLS as a novel gene vector. Biomed Mater Eng 2014;24:1933–9.
  • Hu J, Zhao W, Liu K, et al. Low-molecular weight polyethylenimine modified with Pluronic 123 and RGD- or chimeric RGD-NLS peptide: characteristics and transfection efficacy of their complexes with plasmid DNA. Molecules 2016;21:655?67.
  • Hartmann LC, Keeney GL, Lingle WL, et al. Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 2007;121:938–42.
  • Iwakiri S, Sonobe M, Nagai S, et al. Expression status of folate receptor alpha is significantly correlated with prognosis in non-small-cell lung cancers. Ann Surg Oncol 2008;15:889–99.
  • Chen H, Ahn R, Van den Bossche J, et al. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther 2009;8:1955–63.
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5:309–19.
  • Gabizon A, Tzemach D, Gorin J, et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 2010;66:43–52.
  • Nichols B. Endocytosis of lipid-anchored proteins: excluding GEECs from the crowd. J Cell Biol 2009;186:457–9.
  • Lakhan SE, Sabharanjak S, De A. Endocytosis of glycosylphosphatidylinositol-anchored proteins. J Biomed Sci 2009;16:93
  • Wei K, Peng X, Zou F. Folate-decorated PEG-PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery. Int J Pharm 2014;464:225–33.
  • Li Y, Bi Y, Xi Y, et al. Enhancement on oral absorption of paclitaxel by multifunctional pluronic micelles. J Drug Target 2013;21:188–99.
  • Xu W, Cui Y, Ling P, et al. Preparation and evaluation of folate-modified cationic pluronic micelles for poorly soluble anticancer drug. Drug Deliv 2012;19:208–19.
  • Li M, Liu Y, Feng L, et al. Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery. Colloids Surf B Biointerfaces 2015;131:191–201.
  • Stockert RJ. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol Rev 1995;75:591–609.
  • Kim EM, Jeong HJ, Park IK, et al. Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly(ethylene glycol): in vitro and in vivo studies. J Control Release 2005;108:557–67.
  • Wu DQ, Lu B, Chang C, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials 2009;30:1363–71.
  • Yang R, Meng F, Ma S, et al. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(epsilon-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel. Biomacromolecules 2011;12:3047–55.
  • Wei W, Yue ZG, Qu JB, et al. Galactosylated nanocrystallites of insoluble anticancer drug for liver-targeting therapy: an in vitro evaluation. Nanomedicine (Lond) 2010;5:589–96.
  • Morgan NY, English S, Chen W, et al. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad Radiol 2005;12:313–23.
  • Zhang X, Guo S, Fan R, et al. Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials 2012;33:7103–14.
  • Pardridge WM. Blood-brain barrier delivery. Drug Discov Today 2007;12:54–61.
  • Li J, Zhou L, Ye D, et al. Choline-derivate-modified nanoparticles for brain-targeting gene delivery. Adv. Mater. Weinheim 2011;23:4516–20.
  • Kanai Y, Segawa H, Miyamoto K, et al. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 1998;273:23629–32.
  • Hayashi K, Jutabha P, Endou H, et al. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol 2013;191:4080–5.
  • Sinclair LV, Rolf J, Emslie E, et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 2013;14:500–8.
  • Nii T, Segawa H, Taketani Y, et al. Molecular events involved in up-regulating human Na+-independent neutral amino acid transporter LAT1 during T-cell activation. Biochem J 2001;358:693–704.
  • Huttunen KM, Huttunen J, Aufderhaar I, et al. L-Type amino acid transporter 1 (lat1)-mediated targeted delivery of perforin inhibitors. Int J Pharm 2016;498:205–16.
  • Liu J, He Y, Zhang J, et al. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery. Biomaterials 2016;74:64–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.