411
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Recent developments in trans-sialidase inhibitors of Trypanosoma cruzi

, , , , , & show all
Pages 485-498 | Received 10 Oct 2016, Accepted 29 Jan 2017, Published online: 20 Feb 2017

References

  • Chagas C. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias Do Instituto Oswaldo Cruz 1909;1:159–218.
  • Carbajal-de-la-Fuente AL, Yadón ZE. A scientometric evaluation of the Chagas disease implementation research programme of the PAHO and TDR. PLoS Negl Trop Dis 2013;7:e2445.
  • Lent H, Wygodzinsky P. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease. Bull Am Mus Nat Hist 1979;163:123–520.
  • Valente SA, Valente VD, Fraiha Neto H. Considerations on the epidemiology and transmission of Chagas disease in the Brazilian Amazon. Memórias Do Instituto Oswaldo Cruz 1999;94:395–8.
  • Dias JCP, Brener Z, Andrade ZA, Barral-Netto M, eds. Epidemiologia of Trypanosoma Cruzi e Doença de Chagas. Rio de Janeiro, Brazil: Guanabara Koogan S/A; 2000:48–74.
  • Carlier Y, Torrico F. Congenital infection with Trypanosoma cruzi: from mechanisms of transmission to strategies for diagnosis and control. Revista Da Sociedade Brasileira De Medicina Tropical 2003;36:767–71.
  • Dias JP, Bastos C, Araújo E, et al. Acute Chagas disease outbreak associated with oral transmission. Revista Da Sociedade Brasileira De Medicina Tropical 2008;41:296–300.
  • Cruz-Reyes A, Pickering-López JM. Chagas disease in Mexico: an analysis of geographical distribution during the past 76 years-a review. Memorias Do Instituto Oswaldo Cruz 2006;101:345–54.
  • Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 2011;24:655–81.
  • Hotez PJ, Dumonteil E, Cravioto MB, et al. An unfolding tragedy of Chagas disease in North America. PLoS Negl Trop Dis 2013;7:e2300.
  • Hanford EJ, Zhan FB, Lu Y, Giordano A. Chagas disease in Texas: recognizing the significance and implications of evidence in the literature. Soc Sci Med 2007;65:60–79.
  • Moncayo Á, Silveira AC. Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Memórias Do Instituto Oswaldo Cruz 2009;104:17–30.
  • Bern C, Montgomery SP. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 2009;49:e52–4.
  • Basile L, Jansa JM, Carlier Y, et al. Chagas disease in European countries: the challenge of a surveillance system. Chagas Dis Eur 2011;16:19968.
  • Guerri-Guttenberg RA, Grana DR, Ambrosio G, Milei J. Chagas cardiomyopathy: Europe is not spared!. Eur Heart J 2008;29:2587–91.
  • Reporte sobre la enfermedad de Chagas. Buenos Aires, Argentina: World Health Organization; 2007.
  • Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 2013;13:342–8.
  • Sanchez-Sanchez M, Rivera G, A Garcia E, Bocanegra-Garcia V. Therapeutic targets for the development of anti-Trypanosoma Cruzi drugs: a brief review. Mini Rev Org Chem 2016;13:227–43.
  • Gonzales-Perdomo M, de Castro SL, Meirelles MN, Goldenberg S. Trypanosoma cruzi proliferation and differentiation are blocked by topoisomerase II inhibitors. Antimicrob Agents Chemother 1990;34:1707–14.
  • Fragoso SP, Mattei D, Hines JC, et al. Expression and cellular localization of Trypanosoma cruzi type II DNA topoisomerase. Mol Biochem Parasitol 1998;94:197–204.
  • Neres J, Bryce RA, Douglas KT. Rational drug design in parasitology: trans-sialidase as a case study for Chagas disease. Drug Discov Today 2008;13:110–17.
  • Chamond N, Goytia M, Coatnoan N, et al. Trypanosoma cruzi proline racemases are involved in parasite differentiation and infectivity. Mol Microbiol 2005;58:46–60.
  • Duschak VG, Couto AS. Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem 2009;16:3174–202.
  • Khan OF. Trypanothione reductase: a viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design. Drug Target Insights 2007; 2:129.
  • G Duschak V. A decade of targets and patented drugs for chemotherapy of Chagas disease. Recent Pat Antiinfect Drug Discov 2011;6:216–59.
  • Belluti F, Uliassi E, Veronesi G, et al. Toward the development of dual‐targeted glyceraldehyde‐3‐phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi. Chem Med Chem 2014;9:371–82.
  • Zuccotto F, Martin AC, Laskowski RA, et al. Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. J Comput Aided Mol Des 1998;12:241–57.
  • Khare S, Nagle AS, Biggart A, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 2016;537:229–33.
  • Marino C, de Lederkremer RM. Galactose configurations in Nature with emphasis on the biosynthesis of Galactofuranose in glycans. In: Pomin VH, ed. Galactose: structure and function in biology and medicine. New York: Nova Publisher; 2014:107–34.
  • Zuma AA, Cavalcanti DP, Zogovich M, et al. Unveiling the effects of berenil, a DNA-binding drug, on Trypanosoma cruzi: implications for kDNA ultrastructure and replication. Parasitol Res 2015;114:419–30.
  • de Souza W, Rodrigues JC. Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip Perspect Infect Dis 2009;2009:5.
  • Pilatte Y, Bignon J, Lambré CR. Sialic acids as important molecules in the regulation of the immune system: pathophysiological implications of sialidases in immunity. Glycobiology 1993;3:201–18.
  • dC‐Rubin SS, Schenkman S. Trypanosoma cruzi trans-sialidase as a multifunctional enzyme in Chagas’ disease. Cell Microbiol 2012;14:1522–30.
  • Schenkman S, Eichinger D, Pereira ME, Nussenzweig V. Structural and functional properties of Trypanosoma trans-sialidase. Annu Rev Microbiol 1994;48:499–523.
  • Ming M, Chuenkova M, Ortega-Barria E, Pereira ME. Mediation of Trypanosoma cruzi invasion by sialic acid on the host cell and trans-sialidase on the trypanosome. Mol Biochem Parasitol 1993;59:243–52.
  • Buschiazzo A, Alzari PM. Structural insights into sialic acid enzymology. Curr Opin Chem Biol 2008;12:565–72.
  • Agustí R, Giorgi ME, de Lederkremer RM. The trans-sialidase from Trypanosoma cruzi efficiently transfers α-(2→ 3)-linked N-glycolylneuraminic acid to terminal β-galactosyl units. Carbohydr Res 2007;342:2465–9.
  • Freitas LM, Dos Santos SL, Rodrigues-Luiz GF, et al. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One 2011;6:e25914.
  • Cremona ML, Sánchez DO, Frasch AC, Campetella O. A single tyrosine differentiates active and inactive Trypanosoma cruzi trans-sialidases. Gene 1995;160:123–8.
  • Chiurillo MA, Cortez DR, Lima FM, et al. The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members. Infect Genet Evol 2016;37:266–74.
  • Risso MG, Garbarino GB, Mocetti E, et al. Differential expression of a virulence factor, the trans-sialidase, by the main Trypanosoma cruzi phylogenetic lineages. J Infect Dis 2004;189:2250–9.
  • Zingales B, Carniol C, de Lederkremer RM, Colli W. Direct sialic acid transfer from a protein donor to glycolipids of trypomastigote forms of Trypanosoma cruzi. Mol Biochem Parasitol 1987;26:135–44.
  • Chaves LB, Briones MR, Schenkman S. Trans-sialidase from Trypanosoma cruzi epimastigotes is expressed at the stationary phase and is different from the enzyme expressed in trypomastigotes. Mol Biochem Parasitol 1993;61:97–106.
  • Briones MR, Egima CM, Schenkman S. Trypanosoma cruzi trans-sialidase gene lacking C-terminal repeats and expressed in epimastigote forms. Mol Biochem Parasitol 1995;70:9–17.
  • Jäger AV, Muiá RP, Campetella O. Stage-specific expression of Trypanosoma cruzi trans-sialidase involves highly conserved 3′ untranslated regions. FEMS Microbiol Lett 2008;283:182–8.
  • Agusti R, Couto AS, Campetella OE, et al. The trans-sialidase of Trypanosoma cruzi is anchored by two different lipids. Glycobiology 1997;7:731–5.
  • Buschiazzo A, Amaya MF, Cremona ML, et al. The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 2002;10:757–68.
  • Pollevick GD, Affranchino J, Frasch AC, Sánchez DO. The complete sequence of a shed acute-phase antigen of Trypanosoma cruzi. Mol Biochem Parasitol 1991;47:247–50.
  • Vandekerckhove F, Schenkman S, de Carvalho LP, et al. Substrate specificity of the Trypanosoma cruzi trans-sialidase. Glycobiology 1992;2:541–8.
  • Watts AG, Damager I, Amaya ML, et al. Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J Am Chem Soc 2003;125:7532–3.
  • Todeschini AR, Mendonça-Previato L, Previato JO, et al. Trans-sialidase from Trypanosoma cruzi catalyzes sialoside hydrolysis with retention of configuration. Glycobiology 2000;10:213–21.
  • Buschiazzo A, Tavares GA, Campetella O, et al. Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO J 2000;19:16–24.
  • Pierdominici-Sottile G, Roitberg AE. Proton transfer facilitated by ligand binding. An energetic analysis of the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Biochemistry 2011;50:836–42.
  • Demir O, Roitberg AE. Modulation of catalytic function by differential plasticity of the active site: case study of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase. Biochemistry 2009;48:3398–406.
  • Mitchell FL, Miles SM, Neres J, et al. Tryptophan as a molecular shovel in the glycosyl transfer activity of Trypanosoma cruzi trans-sialidase. Biophys J 2010;98:L38–40.
  • Nesmelova IV, Ermakova E, Daragan VA, et al. Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity. J Mol Biol 2010;397:1209–30.
  • Miller BR, III, Roitberg AE. Trypanosoma cruzi trans-sialidase as a drug target against Chagas disease (American trypanosomiasis). Future Med Chem 2013;5:1889–900.
  • Blume A, Neubacher B, Thiem J, Peters T. Donor substrate binding to trans-sialidase of Trypanosoma cruzi as studied by STD NMR. Carbohydr Res 2007;342:1904–9.
  • Paris G, Ratier L, Amaya MF, et al. A sialidase mutant displaying trans-sialidase activity. J Mol Biol 2005;345:923–34.
  • Goldstein IJ, Winter HC, Poretz RD, et al. New Comprehensive Biochemistry Glycoproteins II. Amsterdam: Elsevier. 1997;29b:243–402.
  • Engstler M, Reuter G, Schauer R. The developmentally regulated trans-sialidase from Trypanosoma brucei sialylates the procyclic acidic repetitive protein. Mol Biochem Parasitol 1993;61:1–3.
  • Tiralongo E, Schrader S, Lange H, et al. Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. J Biol Chem 2003;278:23301–10.
  • Ferrero GMA, Sánchez DO, Frasch AC, Parodi AJ. The effect of pyridoxal 5 phosphate and related compounds on Trypanosoma cruzi trans-sialidase. An Asoc Quim Arg 1993;8:127–32.
  • Carvalho ST, Sola-Penna M, Oliveira IA, et al. A new class of mechanism-based inhibitors for Trypanosoma cruzi trans-sialidase and their influence on parasite virulence. Glycobiology 2010;20:1034–45.
  • Buchini S, Buschiazzo A, Withers SG. A new generation of specific Trypanosoma cruzi trans‐sialidase inhibitors. Angewandte Chemie Int Ed 2008;47:2700–3.
  • Harrison JA, Kartha KR, Turnbull WB, et al. Hydrolase and sialyltransferase activities of Trypanosoma cruzi trans-sialidase towards NeuAc-α-2, 3-Gal-β-O-PNP. Bioorg Med Chem Lett 2001;11:141–4.
  • Agustí R, París G, Ratier L, et al. Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Glycobiology 2004;14:659–70.
  • Agustí R, Giorgi ME, Mendoza VM, et al. Comparative rates of sialylation by recombinant trans-sialidase and inhibitor properties of synthetic oligosaccharides from Trypanosoma cruzi mucins-containing galactofuranose and galactopyranose. Bioorg Med Chem 2007;15:2611–16.
  • Brouillette WJ, Atigadda VR, Luo M, et al. Design of benzoic acid inhibitors of influenza neuraminidase containing a cyclic substitution for the N-acetyl grouping. Bioorg Med Chem Lett 1999;9:1901–6.
  • Carvalho I, Andrade P, Campo VL, et al. ‘Click chemistry’synthesis of a library of 1, 2, 3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg Med Chem 2010;18:2412–27.
  • Campo VL, Ivanova IM, Carvalho I, et al. Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion. Tetrahedron 2015;71:7344–53.
  • Harrison JA, Kartha KR, Fournier EJ, et al. Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries. Org Biomol Chem 2011;9:1653–60.
  • Cano ME, Agusti R, Cagnoni AJ, et al. Synthesis of divalent ligands of β-thio-and β-N-galactopyranosides and related lactosides and their evaluation as substrates and inhibitors of Trypanosoma cruzi trans-sialidase. Beilstein J Org Chem 2014;10:3073–86.
  • Giorgi ME, Ratier L, Agusti R, et al. Improved bioavailability of inhibitors of Trypanosoma cruzi trans-sialidase: PEGylation of lactose analogs with multiarm polyethyleneglycol. Glycobiology 2012;22:1363–73.
  • Agustí R, Cano ME, Cagnoni AJ, et al. Multivalent sialylation of β-thio-glycoclusters by Trypanosoma cruzi trans sialidase and analysis by high performance anion exchange chromatography. Glycoconj J 2016;33:809–18.
  • Hader S, Watts AG. The synthesis of a series of deoxygenated 2, 3-difluoro-N-acteylneuraminic acid derivatives as potential sialidase inhibitors. Carbohydr Res 2013;374:23–8.
  • Silva BL, José Filho DS, Andrade P, et al. Design, synthesis and enzymatic evaluation of 3-O-substituted aryl β-d-galactopyranosides as inhibitors of Trypanosoma cruzi trans-sialidase. Bioorg Med Chem Lett 2014;24:4529–32.
  • Streicher H, Busse H. Building a successful structural motif into sialylmimetics—cyclohexenephosphonate monoesters as pseudo-sialosides with promising inhibitory properties. Bioorg Med Chem 2006;14:1047–57.
  • Neres J, Bonnet P, Edwards PN, et al. Benzoic acid and pyridine derivatives as inhibitors of Trypanosoma cruzi trans-sialidase. Bioorg Med Chem 2007;15:2106–19.
  • Neres J, Brewer ML, Ratier L, et al. Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Bioorg Med Chem Lett 2009;19:589–96.
  • McConkey BJ, Sobolev V, Edelman M. The performance of current methods in ligand-protein docking. Curr Sci 2002;83:845–56.
  • Arioka S, Sakagami M, Uematsu R, et al. Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase. Bioorg Med Chem 2010;18:1633–40.
  • Kim JH, Ryu HW, Shim JH, et al. Development of new and selective Trypanosoma cruzi trans‐sialidase inhibitors from sulfonamide chalcones and their derivatives. Chem Bio Chem 2009;10:2475–9.
  • da Silva EN, de Melo IM, Diogo EB, et al. On the search for potential anti-Trypanosoma cruzi drugs: synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1, 2, 3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem 2012;52:304–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.