366
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application

, , , , , & show all
Pages 661-672 | Received 02 Jan 2017, Accepted 23 Apr 2017, Published online: 08 May 2017

References

  • De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater. 2008;20:4225–4241.
  • Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed. 2004;43:6042–6108.
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed. 2001;40:4128–4158.
  • Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol. 2003;7:609–615.
  • Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol. 2004;22:47–52.
  • Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000;30:545–610.
  • Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum size related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.
  • Igorl M, Tetsuo UH, R GE, et al. Quantum dot bioconjugates for imaging labelling and sensing. Nat Mater. 2005;4:435–446.
  • Jain PK, Huang X, El-Sayed IH, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41:1578–1586.
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544.
  • Park J, Joo J, Kwon SG, et al. Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed Engl. 2007;46:4630–4660.
  • Somers RC, Bawendi MG, Nocera DG. CdSe nanocrystal based chem-/bio- sensors. Chem Soc Rev. 2007;36:579–591.
  • Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci. 2010;368:1333–1383.
  • Talapin DV, Lee J-S, Kovalenko VM, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev. 2010;110:389–458.
  • Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010;39:4326–4354.
  • Feng L, Kong X, Chao K, et al. Efficient phase transfer of hydrophobic CdSe quantum dots: from nonpolar organic solvent to biocompatible water buffer. Mater Chem Phys. 2005;93:310–313.
  • Yang C, Ding N, Xu Y, et al. Folate receptor-targeted quantum dot liposomes as fluorescence probes. J Drug Target. 2009;17:502–511.
  • Barar J, Omidi Y. Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. BioImpacts. 2014;4:3–14.
  • Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–937.
  • Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem. 1986;90: 2555–2560.
  • Mashinchian O, Johari-Ahar M, Ghaemi B, et al. Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts. 2014;4:149–166.
  • Wang Y, Herron N. Nanometer-sized semiconductor clustersmaterials: synthesis, quantum size effects, and photophysical properties. J Phys Chem. 1991;95:525–532.
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5:763–775.
  • Mokari T, Banin U. Synthesis and properties of CdSeZnS coreshell nanorods. Chem Mater. 2003;15:3955–3960.
  • Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc. 2001;123:183–184.
  • Rogach AL, Franzl T, Klar TA, et al. Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J Phys Chem C. 2007;111:14628–14637.
  • Talapin DV, Koeppe R, Götzinger S, et al. Highly emissive colloidal CdSeCdS heterostructures of mixed dimensionality. Nano Lett. 2003;3:1677–1681.
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantumdots. Nano Lett. 2004;4:11–18.
  • Wang XS, Dykstra TE, Salvador MR, et al. Surface passivation of luminescent colloidal quantum dots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process. J Am Chem Soc. 2004;126:7784–7785.
  • Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–2018.
  • Mattoussi H, Mauro JM, Goldman ER, et al. Self-assembly of CdSe − ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc. 2000;122:12142–12150.
  • Pathak S, Choi S-K, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc. 2001;123:4103–4104.
  • Sun B, Xie W, Yi G, et al. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J Immunol Methods. 2001;249:85–89.
  • Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298:1759–1762.
  • Chen Y, Rosenzweig Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett. 2002;2:1299–1302.
  • Gerion D, Pinaud F, Williams SC, et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B. 2001;105:8861–8871.
  • Chen Y, Ji T, Rosenzweig Z. Synthesis of glyconanospheres containing luminescent CdSe − ZnS quantum dots. Nano Lett. 2003;3:581–584.
  • Bothun GD, Rabideau AE, Stoner MA. Hepatoma cell uptake of cationic multifluorescent quantum dot liposomes. J Phys Chem B. 2009;113:7725–7728.
  • Rubinstein I, Soos I, Onyuksel H. Intracellular delivery of Vip-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. Chem Biol Interact. 2008;171:190–194.
  • Schroeder JE, Shweky I, Shmeeda H, et al. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release. 2007;124:28–34.
  • Choi KY, Liu G, Lee S, et al. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 2012;4:330–342.
  • Ho Y-P, Leong KW. Quantum dot-based theranostics. Nanoscale. 2010;2:60–68.
  • Yong K-T, Wang Y, Roy I, et al. Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics. 2012;2:681–694.
  • Rousserie G, Sukhanova A, Even-Desrumeaux K, et al. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit Rev Oncol Hematol. 2010;74:1–15.
  • Shi C, Zhu Y, Cerwinka WH, et al. Quantum dots: emerging applications in urologic oncology. Urol Oncol. 2008;26:86–92.
  • Al-Jamal WT, Al-Jamal KT, Bomans PH, et al. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small. 2008a;4:1406–1415.
  • Muthu MS, Kulkarni SA, Xiong J, et al. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int J Pharm. 2011;421:332–340.
  • Wi HS, Kim SJ, Lee K, et al. Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability. Colloids Surf B Biointerfaces. 2012;97:37–42.
  • Beloglazova NV, Goryacheva OA, Speranskaya ES, et al. Silica-coated liposomes loaded with quantum dots as labels for multiplex fluorescent immunoassay. Talanta. 2015;134:120–125.
  • Beloglazova NV, Shmelin PS, Speranskaya ES, et al. Quantum dot loaded liposomes as fluorescent labels for immunoassay. Anal Chem. 2013b;85: 7197–7204.
  • Muthu MS, Kulkarni SA, Raju A, et al. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2012;33:3494–3501.
  • Tian B, Al-Jamal WT, Al-Jamal KT, et al. Doxorubicin-loaded lipid-quantum dot hybrids: surface topography and release properties. Int J Pharm. 2011;416:443–447.
  • Wen CJ, Sung CT, Aljuffali IA, et al. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes. Nanotechnology. 2013;24:325101.
  • Wen CJ, Zhang LW, Al-Suwayeh SA, et al. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomed. 2012;7:1599–1611.
  • Beloglazova NV, Shmelin PS, Goryacheva IY, et al. Liposomes loaded with quantum dots for ultrasensitive on-site determination of aflatoxin M1 in milk products. Anal Bioanal Chem. 2013a;405:7795–7802.
  • Szoka F, Papahadjopouls D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA. 1978;75:4194–4198.
  • Gao X, Huang L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun. 1991;179:280–285.
  • Jubeli E, Raju L, Khalique NA, et al. Polyene-based cationic lipids as visually traceable siRNA transfer reagents. Eur J Pharm Biopharm. 2015;89:280–289.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–160.
  • Niyomtham N, Apiratikul N, Suksen K, et al. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures andlipophilic tails. Bioorg Med Chem Lett. 2015;25:496–503.
  • Al-Jamal WT, Al-Jamal KT, Tian B, et al. Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. Mol Pharm. 2009;6:520–530.
  • Samadikhah HR, Nikkhah M, Hosseinkhani S. Enhancement of cell internalization and photostability of red and green emitter quantum dots upon entrapment in novel cationic nanoliposomes. Luminescence. 2016. doi: 10.1002/bio.3207. [Epub ahead of print].
  • Lv H, Zhang S, Wang B, et al. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114:100–109.
  • Zeng Q, Zhang Y, Sun Y, et al. Fluorescence thermal antiquenching of liposome encapsulated CdSe quantum dots. J Nanosci Nanotechnol. 2010;10:7311–7315.
  • Al-Jamal WT, Al-Jamal KT, Tian B, et al. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano. 2008b;2:408–418.
  • Detampel P, Witzigmann D, Krahenbuhl S, et al. Hepatocyte targeting using pegylated asialofetuin-conjugated liposomes. J Drug Target. 2013;22:232–241.
  • Wang JY, Zhao JF, Wang PN, et al. Liposome encapsulation of thiol-capped CdTe quantum dots for enhancing the intracellular delivery. J Fluoresc. 2011;21:1635–1642.
  • Zhang L-W, Wen C-J, Al-Suwayeh SA, et al. Cisplatin and quantum dots encapsulated in liposomes as multifunctional nanocarriers for theranostic use in brain and skin. J Nanopart Res. 2012;14:882.
  • Dudu V, Ramcharan M, Gilchrist ML, et al. Liposome delivery of quantum dots to the cytosol of live cells. J Nanosci Nanotechnol. 2008;8:2293–2300.
  • Dudu V, Rotari V, Vazquez M. Sendai virus-based liposomes enable targeted cytosolic delivery of nanoparticles in brain tumor-derived cells. J Nanobiotechnol. 2012;10:9.
  • Cruz M. T G d, Simões S, Pires PPC, et al. Kinetic analysis of the initial steps involved in lipoplex–cell interactions: effect of various factors that influence transfection activity. Biochim Biophys Acta. 2001;1510:136–151.
  • Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA. 1996;93:12349–12354.
  • Biju V, Mundayoor S, Omkumar RV, et al. Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol Adv. 2010;28:199–213.
  • Chu M, Zhuo S, Xu J, et al. Liposome-coated quantum dots targeting the sentinel lymph node. J Nanopart Res. 2010;12:187–197.
  • Sigot V, Arndt-Jovin J,D, Jovin TM. Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes. Bioconjugate Chem. 2010;21:1465–1472.
  • Wafa TA-J, Kostarelos K. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine. 2007;2: 85–98.
  • Sabharwal N, Holland EC, Vazquez M. Live cell labeling of glial progenitor cells using targeted quantum dots. Ann Biomed Eng. 2009;37:1967–1973.
  • Yarden Y. The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37:S3–S8.
  • Weng KC, Hashizume R, Noble CO, et al. Convection-enhanced delivery of targeted quantum dot–immunoliposome hybrid nanoparticles to intracranial brain tumor models. Nanomedicine. 2013;8:1913–1925.
  • Fang J-Y, Hwang T-L, Huang Y-L. Liposomes as vehicles for enhancing drug delivery via skin routes. Curr Nanosci. 2006;2:55–70.
  • Paulos CM, Turk MJ, Breur GJ, et al. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev. 2004;56:1205–1217.
  • Xue M, Wang X, Wang H, et al. The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta. 2011;83:1680–1686.
  • Zhang X, Xie J, Li S, et al. The study on brain targeting of the amphotericin B liposomes. J Drug Target. 2003;11:117–122.
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41:147–162.
  • Wang F, Chen Z, Zhu L. cRGD-conjugated magnetic-fluorescent liposomes for targeted dual-modality imaging of bone metastasis from prostate cancer. J Liposome Res. 2015;25:89–100.
  • Garbuzenko OB, Mainelis G, Taratula O, et al. Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med. 2014;11:44–55.
  • Wilson B, Samanta MK, Santhi K, et al. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res. 2008;1200:159–168.
  • Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res. 2010;27:1759–1771.
  • Sonali s, Singh RP, Sharma G, Kumari L, et al. RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf B Biointerfaces. 2016;147:129–141.
  • Hu Z, Luo F, Pan Y, et al. Arg-Gly-Asp (RGD) peptide conjugated poly(lactic acid)-poly(ethylene oxide) micelle for targeted drug delivery. J Biomed Mater Res A. 2008;85:797–807.
  • Chen X, Plasencia C, Hou Y, et al. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem. 2005;48:1098–1106.
  • Qin J, Chen D, Hu H, et al. Body distribution of RGD-mediated liposome in brain-targeting drug delivery. Yakugaku Zasshi. 2007;127:1497–1501.
  • Tian B, Al-Jamal WT, Kostarelos K. The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics. Chin Phys B. 2014;23:087805.
  • Kethineedi VR, Crivat G, Tarr MA, et al. Quantum dot-NBD-liposome luminescent probes for monitoring phospholipase A2 activity. Anal Bioanal Chem. 2013;405:9729–9737.
  • Zagidullin VE, Lukashev EP, Knox PP, et al. Properties of hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes. Biochemistry (Moscow). 2014;79:1183–1191.
  • Lukashev EP, Knox PP, Gorokhov VV, et al. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films. J Photochem Photobiol B. 2016;164:73–82.
  • Zavari-Nematabad A, Alizadeh-Ghodsi M, Hamishehkar H, et al. Development of quantum-dot-encapsulated liposome-based optical nanobiosensor for detection of telomerase activity without target amplification. Anal Bioanal Chem. 2016; 409:1301–1310.
  • Gopalakrishnan G, Danelon C, Izewska P, et al. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Ed Engl. 2006;45:5478–5483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.