286
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Multifunctional micelle delivery system for overcoming multidrug resistance of doxorubicin

, , , , , & show all
Pages 289-295 | Received 02 May 2017, Accepted 11 Sep 2017, Published online: 21 Sep 2017

References

  • Elkhodiry MA, Husseini GA, Velluto D. Targeting the folate receptor effects of conjugating folic acid to DOX loaded polymeric micelles. Anti-cancer Agents Med Chem. 2016;16:1275–1280.
  • Dinic J, Podolski-Renic A, Stankovic T, et al. New approaches with natural product drugs for overcoming mutidrug resistance in cancer. Curr Pharm Des. 2015;21:5589–5604.
  • Patel NR, Pattni BS, Abouzeid AH, et al. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 2013;65:1748–1762.
  • Prochazkova J, Lanova M, Pachernik J. Multidrug resistance-associated ABC transporters - too much of one thing, good for nothing. Biomol Concepts. 2012;3:319–331.
  • Tanigawara Y. Role of P-glycoprotein in drug disposition. Ther Drug Monit. 2000;22:137–140.
  • Sakai-Kato K, Nanjo K, Kusuhara H, et al. Effect of knockout of Mdr1a and Mdr1b ABCB1 genes on the systemic exposure of a doxorubicin-conjugated block copolymer in mice. Mol Pharm. 2015;12:3175–3183.
  • Shen J, Wang Q, Hu Q, et al. Restoration of chemosensitivity by multifunctional micelles mediated by P-gp siRNA to reverse MDR. Biomaterials. 2014;35:8621–8634.
  • Cheng T, Liu J, Ren J, et al. Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance. Theranostics. 2016;6:1277–1292.
  • Bisi A, Cappadone C, Ramap A. Coumarin derivatives as potential antitumor agents: growth inhibition, apoptosis induction andmultidrug resistance reverting activity. Eur J Med Chem. 2017;127:577–585.
  • Thomas S, Quinn BA, Das SK, et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets. 2013;17:61–75.
  • Lavik AR, Zhong F, Chang MJ. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget. 2015;6:27388–27402.
  • Zhu QL, Zhou Y, Guan M, et al. Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials. 2014;35:5965–5976.
  • Amjad MW, Amin MC, Katas H, et al. In vivo antitumor activity of folate-conjugated cholic acid-polyethylenimine micelles for the co-delivery of doxorubicin and siRNA to colorectal adenocarcinamas. Mol Pharm. 2015;12:4247–4258.
  • Liu T, Xue W, Ke B, et al. Star-shaped cyclodextrin-poly(l-lysine) derivative co-delivering docetaxel and MMP-9 siRNA plasmid in cancer therapy. Biomaterials. 2014;35:3865–3872.
  • Biswas S, Deshpande PP, Navarro G, et al. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials. 2013;34:1289–1301.
  • Cheng Q, Du L, Meng L, et al. The promising nanocarrier for doxorubicin and siRNA co-delivery by PDMAEMA-based amphiphilic nanomicelles. ACS Appl Mater Interfaces. 2016;8:4347–4356.
  • Butt AM, Amin MC, Katas H, et al. Doxorubiicn and siRNA codelivery via chitosan-coated pH-responsive mixed micellar polyplexes for enhanced cancer therapy in multidrug-resistant tumors. Mol Pharm. 2016;13:4179–4190.
  • Wang YR, Fang J, Cheng D, et al. A pH-sensitive micelle for co-delivery of siRNA and doxorubicin to hepatoma cells. Polymer. 2014;55:3217–3226.
  • Wu Y, Zhang Y, Zhang W, et al. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloid Surf B. 2016;138:60–69.
  • Zou SY, Cao N, Cheng D, et al. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Int J Nanomedicine. 2017;7:3823–3835.
  • Zhang CG, Zhu WJ, Liu Y, et al. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep. 2016;6:23859.
  • Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–818.
  • Wang BL, Shen YM, Zhang QW, et al. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomedicine. 2013;8:3521–3531.
  • Guo S, Lv L, Shen Y, et al. A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Sci Rep. 2016;6:21459.
  • Khan M, Maryam A, Mehmood T, et al. Enhancing activity of anticancer drugs in multidrug resistant tumors by modulating P-glycoprotein through dietary nutraceuticals. Asian Pac J Cancer Prev. 2015;16:6831–6839.
  • Pimentel-Gutierrez HJ, Bobadilla-Morales L, Barba-Barba CC, et al. Curcumin potentiates the effect of chemotherapy against acute lymphoblastic leukemia cells via downregulation of NF-κB. Oncol Lett. 2016;12:4117–4124.
  • Sen GS, Mohanty S, Hossain DM, et al. Curcumin enhances the efficacy of chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of p53–p300 in breast cancer. J Biol Chem. 2011;286:42232–42247.
  • Anand P, Sundaram C, Jhurani S, et al. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267:1333–1364.
  • Lv L, Qiu KF, Yu XX, et al. Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J Biomed Nanotechnol. 2016;12:973–985.
  • Gu Y, Li J, Li Y, et al. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. Int J Nanomedicine. 2016;11:5757–5770.
  • Wang JJ, Ma WZ, Tu PF. Synergistically improved anti-tumor efficacy by co-delivery doxorubicin and curcumin polymeric micelles. Macromol Biosci. 2015;15:1252–1261.
  • Ma W, Guo Q, Li Y, et al. Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy. Eur J Pharm Biopharm. 2017;112:209–223.
  • Sarisozen C, Dhokai S, Tsikudo EG, et al. Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: in vitro evaluation on 2D and 3D tumor models. Eur J Pharm Biopharm. 2016;108:54–67.
  • Yi XQ, Zhao D, Zhang Q, et al. Preparation of multi-location reduction-sensitive core crosslinked folate-PEG-coated micelles for rapid release of doxorubicin and tariquidar to overcome drug resistance. Nanotechnology. 2017;28:085603.
  • Duan XP, Xiao JH, Yin Q, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858–5869.
  • Abouzeid AH, Patel NR, Rachman IM, et al. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target. 2013;21:994–1000.
  • Li X, Gao C, Wu Y, et al. Combination delivery of Adjudin and Doxorubicin via integrating drug conjugation and nanocarrier approaches for the treatment of drug-resistant cancer cells. J Mater Chem B Mater Biol Med. 2015;3:1556–1564.
  • Fan L, Li F, Zhang H, et al. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials. 2010;31:5634–5642.
  • Saiyin W, Wang D, Li L, et al. Sequential release of autophagy inhibitor and chemotherapeutic drug with polymeric delivery system for oral squamous cell carcinoma therapy. Mol Pharm. 2014;11:1662–1675.
  • Braunova A, Kostka L, Sivak L, et al. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J Control Release. 2017;245:41–51.
  • Xiao L, Xiong X, Sun X, et al. Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials. 2011;32:5148–5157.
  • Wang H, Qu L, Jin W, et al. Pegylated phosphotidylethanolamine inhibiting P-glycoprotein expression and enhancing retention of doxorubicin in MCF7/ADR cells. J Pharm Sci. 2011;100:2267–2277.
  • Yang C, Zhao H, Yuan H, et al. Preparation and characterization of the thermosensitive and folate functionalized pluronic micelles. J Nanosci Nanotechnol. 2013;13:6553–6559.
  • Minko T, Batrakova EV, Li S, et al. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release. 2015;448:269–278.
  • Akash MS, Rehman K. Recent progress in biomedical applications of pluronic(PF127): pharmaceutical perspectives. J Control Release. 2015;209:120–138.
  • Wei Z, Yuan S, Hao J, et al. Mechanism of inhibition of P-glycoprotein mediated efflux by pluronic P123/F127 block copolymers: relationship between copolymer concentration and inhibitory activity. Eur J Pharm Biopharm. 2013;83:266–274.
  • Han M, Diao YY, Jiang HL, et al. Molecular mechanism study of chemosensitization of doxorubicin-resistant human myelogenous leukemia cells induced by a composite polymer micelle. Int J Pharm. 2011;420:404–411.
  • Minko T, Batrakova EV, Li S, et al. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release. 2005;105:269–278.
  • Chen Y, Zhang W, Huang Y, et al. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistance tumor. Int J Pharm. 2015;488:44–58.
  • Wang M, Han M, Li Y, et al. Chemosensitization of doxorubicin in multidrug-resistant cells by unimolecular micelles via increased cellular accumulation and apoptosis. J Pharm Pharmacol. 2016;68:333–341.
  • Diao YY, Han M, Ding PT, et al. DOX-loaded PEG-PLGA and pluronic copolymer composite micelles enhances cytotoxicity and the intracellular accumulation of drug in DOX-resistant tumor cells. Pharmazie. 2010;65:356–358.
  • Jung H, Mok H. Mixed micelles for targeted and efficent doxorubicin delivery to multidrug resistant breast cancer cells. Macromol Biosci. 2016;16:748–758.
  • Chen Y, Zhang W, Huang Y, et al. Dual-functional c(RGDyK)-decorated pluronic micelles designed for antiangiogenesis and the treatment of drug-resistant tumor. Int J Nanomedicine. 2015;10:4863–4881.
  • Guo X, Li D, Yang G, et al. Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl Mater Interfaces. 2014;6:8549–8559.
  • Bao YL, Yin MX, Hu XM, et al. A safe, simple and efficient doxorubicin and prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release. 2016;235:182–194.
  • Yu PC, Yu HJ, Guo CY, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater. 2015;14:115–124.
  • Jin Y, Zhang ZJ, Zhao T, et al. Mixed micelles of doxorubicin overcome multidrug resistance by inhibiting the expression of P-glycoprotein. J Biomed Nanotechnol. 2015;11:1330–1338.
  • Mi Y, Liu YT, Feng SS. Formulation of docetaxel by folic acid-conjugated D-a-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials. 2011;32:4058–4066.
  • Huang Y, Lu J, Gao X, et al. PEG-derivatized embelin as a dual functional carrier for the delivery of paclitaxel. Bioconjug Chem. 2012;23:1443–1451.
  • Hao T, Chen D, Liu K, et al. Micelles of d-α-tocopheryl polyethylene glycol 2000 succinate (TPGS 2K) for doxorubicin delivery with reversal of multidrug resistance. ACS Appl Mater Interfaces. 2015;7:18064–18075.
  • Qiu L, Qiao M, Chen Q, et al. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials. 2014;35:9877–9887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.