332
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Local drug delivery in the urinary tract: current challenges and opportunities

, , , , , , , , & show all
Pages 658-669 | Received 14 Aug 2017, Accepted 05 Dec 2017, Published online: 17 Jan 2018

References

  • McCance KL, Huether SE. Pathophysiology: the biologic basis for disease in adults and children. 7th ed. St. Louis (MO): Mosby; 2014.
  • Wildenfels P, Opal S, Hessen M, et al. Urinary tract infections. ClinicalKey. St. Louis (MO): Elsevier. 2017 [cited 2017 Jul 6]. Available from: https://www.clinicalkey.com/#!/content/21-s2.0-1014619
  • Mittal R, Aggarwal S, Sharma S, et al. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health. 2009;2:101–111.
  • Flores-Mireles AL, Walker JN, Caparon M, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015; 13:269–284.
  • Nicolle LE. Epidemiology of urinary tract infections. Clin Microbiol Newsl. 2002;24:135–140.
  • Gupta K, Trautner BW. Urinary tract infections, pyelonephritis, and prostatitis. In: Kasper D, Fauci A, Hauser S, et al. editors. Harrison's principles of internal medicine. 19th ed. New York (NY): McGraw-Hill Education; 2015. p. 861–868.
  • Schrier R. Diseases of the kidney & urinary tract. 8th ed. Philadelphia (PA): Lippincott Williams & Wilkins; 2007 [cited 2017 Jul 6]. Available from: https://www-r2library-com.access.library.miami.edu/Resource/Title/0781793076
  • Griebling TL. Urologic diseases in America project: trends in resource use for urinary tract infections in women. J Urol. 2005;173:1281–1287.
  • Brusch JL, Bavaro MF, Cunha BA. Cystitis in females: practice essentials, background, pathophysiology. Medscape. 2017 [cited 2017 Jul 6]. Available from: https://emedicine.medscape.com/article/233101-overview
  • Nguyen HT. Bacterial infections of the genitourinary tract. In: McAninch JW, Lue TF. editors. Smith and Tanagho’s general urology. 18th ed. New York (NY): McGraw-Hill; 2013 [cited 2017 Jul 6]. Available from: http://accessmedicine.mhmedical.com/content.aspx?bookid=508&sectionid=41088091
  • Foxman B, Somsel P, Tallman P, et al. Urinary tract infection among women aged 40 to 65: behavioral and sexual risk factors. J Clin Epidemiol. 2001;54:710–718.
  • Matsumoto T. Urinary tract infections in the elderly. Curr Urol Rep. 2001;2:330–333.
  • Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28:1–13.
  • Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med. 2002;113(1A): 14S–19S.
  • Nielubowicz GR, Mobley HL. Host-pathogen interactions in urinary tract infection. Nat Rev Urol. 2010;7:430–441.
  • Kline KA, Schwartz DJ, Lewis WG, et al. Immune activation and suppression by group B streptococcus in a murine model of urinary tract infection. Infect Immun. 2011; 79:3588–3595.
  • Levison ME, Kaye D. Treatment of complicated urinary tract infections with an emphasis on drug-resistant gram-negative uropathogens. Curr Infect Dis Rep. 2013; 15:109–115.
  • Jacobsen SM, Stickler DJ, Mobley HL, et al. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008;21:26–59.
  • Fisher JF, Kavanagh K, Sobel JD, et al. Candida urinary tract infection: pathogenesis. Clin Infect Dis. 2011; 52(6):S437–S451.
  • Chen YH, Ko WC, Hsueh PR. Emerging resistance problems and future perspectives in pharmacotherapy for complicated urinary tract infections. Expert Opin Pharmacother. 2013;14:587–596.
  • Orskov I, Orskov F, Birch-Andersen A, et al. O, K, H and fimbrial antigens in Escherichia coli serotypes associated with pyelonephritis and cystitis. Scand J Infect Dis Suppl. 1982;33:18–25.
  • Hovanec DL, Gorzynski EA. Coagglutination as an expedient for grouping Escherichia coli associated with urinary tract infections. J Clin Microbiol. 1980;11:41–44.
  • Blanco M, Blanco JE, Alonso MP, et al. Virulence factors and O groups of Escherichia coli isolates from patients with acute pyelonephritis, cystitis and asymptomatic bacteriuria. Eur J Epidemiol. 1996;12:191–198.
  • Buckles EL, Wang X, Lane MC, et al. Role of the K2 capsule in Escherichia coli urinary tract infection and serum resistance. J Infect Dis. 2009;199:1689–1697.
  • Mittal R, Khandwaha RK, Gupta V, et al. Phenotypic characters of urinary isolates of Pseudomonas aeruginosa & their association with mouse renal colonization. Indian J Med Res. 2006;123:67–72.
  • Mittal R, Sharma S, Chhibber S, et al. Correlation between serogroup, in vitro biofilm formation and elaboration of virulence factors by uropathogenic Pseudomonas aeruginosa. FEMS Immunol Med Microbiol. 2010;58:237–243.
  • Gupta A, Landis RF, Rotello VM. Nanoparticle-based antimicrobials: surface functionality is critical. F1000Res. 2016;5:1–10.
  • Mittal R, Sharma S, Chhibber S, et al. Effect of macrophage secretory products on elaboration of virulence factors by planktonic and biofilm cells of Pseudomonas aeruginosa. Comp Immunol Microbiol Infect Dis. 2006;29:12–26.
  • Mittal R, Sharma S, Chhibber S, et al. Contribution of free radicals to Pseudomonas aeruginosa induced acute pyelonephritis. Microb Pathog. 2008;45:323–330.
  • Mittal R, Sharma S, Chhibber S, et al. Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J Biomed Sci. 2008;15:731–741.
  • Mittal R, Aggarwal S, Sharma S, et al. Contribution of macrophage secretory products to urovirulence of Pseudomonas aeruginosa. FEMS Immunol Med Microbiol. 2009;57:156–164.
  • Mittal R, Chhibber S, Sharma S, et al. Macrophage inflammatory protein-2, neutrophil recruitment and bacterial persistence in an experimental mouse model of urinary tract infection. Microbes Infect. 2004;6:1326–1332.
  • Anderson GG, Martin SM, Hultgren SJ. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect. 2004;6:1094–1101.
  • Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7:653–660.
  • Huang ES, Stafford RS. National patterns in the treatment of urinary tract infections in women by ambulatory care physicians. Arch Intern Med. 2002;162:41–47.
  • Brown PD, Freeman A, Foxman B. Prevalence and predictors of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli isolates in Michigan. Clin Infect Dis. 2002;34:1061–1066.
  • Schaeffer AJ. The expanding role of fluoroquinolones. Am J Med. 2002;113(1A):45S–54S.
  • Saini H, Vadekeetil A, Chhibber S, et al. Azithromycin-ciprofloxacin-impregnated urinary catheters avert bacterial colonization, biofilm formation, and inflammation in a murine model of foreign-body-associated urinary tract infections caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:e01906–01916.
  • Santucci RA, Krieger JN. Gentamicin for the practicing urologist: review of efficacy, single daily dosing and “switch therapy”. J Urol. 2000;163:1076–1084.
  • Hoberman A, Wald ER, Hickey RW, et al. Oral versus initial intravenous therapy for urinary tract infections in young febrile children. Pediatrics. 1999;104:79–86.
  • Lawrenson RA, Logie JW. Antibiotic failure in the treatment of urinary tract infections in young women. J Antimicrob Chemother. 2001;48:895–901.
  • Fisher JF, Sobel JD, Kauffman CA, et al. Candida urinary tract infections—treatment. Clin Infect Dis. 2011; 52(6):S457–S466.
  • Neutsch L, Eggenreich B, Herwig E, et al. Biomimetic delivery strategies at the urothelium: targeted cytoinvasion in bladder cancer cells via lectin bioconjugates. Pharm Res. 2014;31:819–832.
  • Tyagi P, Wu PC, Chancellor M, et al. Recent advances in intravesical drug/gene delivery. Mol Pharm. 2006;3: 369–379.
  • Pichl CM, Dunkl B, Brauner B, et al. Biomimickry of UPEC cytoinvasion: a novel concept for improved drug delivery in UTI. Pathogens. 2016;5(1):16.
  • Frimodt-Moller N. Correlation between pharmacokinetic/pharmacodynamic parameters and efficacy for antibiotics in the treatment of urinary tract infection. Int J Antimicrob Agents. 2002;19:546–553.
  • Rani SA, Celeri C, Najafi R, et al. Irrigation with N,N-dichloro-2,2-dimethyltaurine (NVC-422) in a citrate buffer maintains urinary catheter patency in vitro and prevents encrustation by Proteus mirabilis. Urolithiasis. 2016; 44:247–256.
  • Soto SM. Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol. 2014;2014:1–13.
  • Delcaru C, Alexandru I, Podgoreanu P, et al. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens. 2016;5:65.
  • Shenderovich J, Feldman M, Kirmayer D, et al. Local sustained-release delivery systems of the antibiofilm agent thiazolidinedione-8 for prevention of catheter-associated urinary tract infections. Int J Pharm. 2015;485:164–170.
  • Zacche MM, Srikrishna S, Cardozo L. Novel targeted bladder drug-delivery systems: a review. Res Rep Urol. 2015; 7:169–178.
  • Labbaf S, Horsley H, Chang MW, et al. An encapsulated drug delivery system for recalcitrant urinary tract infection. J R Soc Interface. 2013;10:20130747.
  • Pichl CM, Feilhauer S, Schwaigerlehner RM, et al. Glycan-mediated uptake in urothelial primary cells: perspectives for improved intravesical drug delivery in urinary tract infections. Int J Pharm. 2015;495:710–718.
  • Meng Y, Hou X, Lei J, et al. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin-resistant Staphylococcus aureus. Pharm Res. 2016;33:763–775.
  • Pereira S, Pereira C, Santos L, et al. Potential of phage cocktails in the inactivation of Enterobacter cloacae–an in vitro study in a buffer solution and in urine samples. Virus Res. 2016;211:199–208.
  • Skurnik M, Strauch E. Phage therapy: facts and fiction. Int J Med Microbiol. 2006;296:5–14.
  • Twort FW. An investigation on the nature of ultra-microscopic viruses. Lancet. 1915;186:1241–1243.
  • Abedon ST, Kuhl SJ, Blasdel BG, et al. Phage treatment of human infections. Bacteriophage. 2011;1:66–85.
  • Singla S, Harjai K, Katare OP, et al. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One. 2016;11:e0153777.
  • Chadha P, Katare OP, Chhibber S. Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns. 2017;43(7):1532–1543.
  • Singla S, Harjai K, Katare OP, et al. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J Infect Dis. 2015;212:325–334.
  • Singla S, Harjai K, Raza K, et al. Phospholipid vesicles encapsulated bacteriophage: a novel approach to enhance phage biodistribution. J Virol Methods. 2016;236:68–76.
  • Nzakizwanayo J, Hanin A, Alves DR, et al. Bacteriophage can prevent encrustation and blockage of urinary catheters by Proteus mirabilis. Antimicrob Agents Chemother. 2015;60:1530–1536.
  • Melo LD, Veiga P, Cerca N, et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol. 2016;7:1024.
  • Pajunen M, Kiljunen S, Skurnik M. Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol. 2000; 182:5114–5120.
  • Pajunen MI, Kiljunen SJ, Soderholm ME, et al. Complete genomic sequence of the lytic bacteriophage phiYeO3-12 of Yersinia enterocolitica serotype O:3. J Bacteriol. 2001; 183:1928–1937.
  • Sybesma W, Zbinden R, Chanishvili N, et al. Bacteriophages as potential treatment for urinary tract infections. Front Microbiol. 2016;7:465.
  • Leuck AM, Johnson JR, Hunt MA, et al. Safety and efficacy of a novel silver-impregnated urinary catheter system for preventing catheter-associated bacteriuria: a pilot randomized clinical trial. Am J Infect Control. 2015;43:260–265.
  • Stensballe J, Tvede M, Looms D, et al. Infection risk with nitrofurazone-impregnated urinary catheters in trauma patients: a randomized trial. Ann Intern Med. 2007;147: 285–293.
  • Lam TB, Omar MI, Fisher E, et al. Types of indwelling urethral catheters for short-term catheterisation in hospitalised adults. Cochrane Database Syst Rev. 2014; 9:CD004013.
  • Prieto J. Whether nitrofurazone-impregnated catheters have a clinically important impact on the risk of UTI compared to standard catheters is uncertain, but they may be cost-effective for the NHS. Evid Based Nurs. 2014;17:28–29.
  • Stenzelius K, Laszlo L, Madeja M, et al. Catheter-associated urinary tract infections and other infections in patients hospitalized for acute stroke: a prospective cohort study of two different silicone catheters. Scand J Urol. 2016;50:483–488.
  • Cabuzu D, Cirja A, Puiu R, et al. Biomedical applications of gold nanoparticles. Curr Top Med Chem. 2015;15: 1605–1613.
  • Turcheniuk K, Hage CH, Spadavecchia J, et al. Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. J Mater Chem B. 2015;3:375–386.
  • Khantamat O, Li CH, Yu F, et al. Gold nanoshell-decorated silicone surfaces for the near-infrared (NIR) photothermal destruction of the pathogenic bacterium E. faecalis. ACS Appl Mater Interfaces. 2015;7:3981–3993.
  • Meeker DG, Jenkins SV, Miller EK, et al. Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis. 2016;2:241–250.
  • Li X, Robinson SM, Gupta A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8: 10682–10686.
  • Payne JN, Waghwani HK, Connor MG, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016;7: 607.
  • Alexander JW. History of the medical use of silver. Surg Infect (Larchmt). 2009;10:289–292.
  • Naqvi SZH, Kiran U, Ali MI, et al. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomedicine. 2013;8:3187–3195.
  • Morones-Ramirez JR, Winkler JA, Spina CS, et al. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med. 2013;5:190ra81.
  • Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8:423–435.
  • Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831.
  • Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010; 411:1841–1848.
  • Longhi C, Santos JP, Morey AT, et al. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med Mycol. 2016;54:428–432.
  • Chaurasia AK, Thorat ND, Tandon A, et al. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep. 2016;6:33662.
  • Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide from synthesis to application: a review. Materials. 2014; 7:2833–2881.
  • McGuffie MJ, Hong J, Bahng JH, et al. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. Nanomedicine. 2016;12:33–42.
  • An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–348.
  • Bhande RM, Khobragade CN, Mane RS, et al. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections. J Nanopart Res. 2013; 15:1413.
  • Woźniak-Budych MJ, Przysiecka Ł, Langer K, et al. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity. J Mater Sci Mater Med. 2017;28:42.
  • Shende S, Ingle AP, Gade A, et al. Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31:865–873.
  • Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicine-an overview. Fundam Clin Pharmacol. 2009;23:263–269.
  • Salouti M, Ahangari A. Application of nanotechnology in drug delivery. 5. Nanoparticle based drug delivery systems for treatment of infectious diseases. Intech. 2014 [cited 2017 Jul 6]. Available from: https://www.intechopen.com/books/application-of-nanotechnology-in-drug-delivery/nanoparticle-based-drug-delivery-systems-for-treatment-of-infectious-diseases
  • Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm. 2010;394:115–121.
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.
  • Whitfield C, Roberts IS. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol. 1999;31:1307–1319.
  • Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5:496–504.
  • Arvizo RR, Miranda OR, Moyano DF, et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One. 2011;6:e24374.
  • Damiano R, Quarto G, Bava I, et al. Prevention of recurrent urinary tract infections by intravesical administration of hyaluronic acid and chondroitin sulphate: a placebo-controlled randomised trial. Eur Urol. 2011;59:645–651.
  • Ciani O, Arendsen E, Romancik M, et al. Intravesical administration of combined hyaluronic acid (HA) and chondroitin sulfate (CS) for the treatment of female recurrent urinary tract infections: a European multicentre nested case-control study. BMJ Open. 2016;6:e009669.
  • Ablove T, Patankar M, Seo S. Prevention of recurrent urinary tract infections by intravesical administration of heparin: a pilot study. Ther Adv Urol. 2013;5:303–309.
  • Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103:301–313.
  • Eriksen BC. A randomized, open, parallel-group study on the preventive effect of an estradiol-releasing vaginal ring (Estring) on recurrent urinary tract infections in postmenopausal women. Obstet Gynecol. 1999;180:1072–1079.
  • Hopkins WJ, Elkahwaji J, Beierle LM, et al. Vaginal mucosal vaccine for recurrent urinary tract infections in women: results of a phase 2 clinical trial. J Urol. 2007;177:1349–1353.
  • Stapleton AE, Au-Yeung M, Hooton TM, et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin Infect Dis. 2011;52:1212–1217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.