635
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Targeting pulmonary tuberculosis using nanocarrier-based dry powder inhalation: current status and futuristic need

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12-27 | Received 20 Dec 2017, Accepted 19 Mar 2018, Published online: 03 Apr 2018

References

  • Tiberi S, Buchanan R, Caminero JA, et al. The challenge of the new tuberculosis drugs. Presse Med. 2017;46:e41–e51.
  • WHO. Global Tuberculosis Report. Geneva: World Health Organization; 2016.
  • Velayati AA, Farnia P, Farahbod AM. Overview of drug-resistant tuberculosis worldwide. Int J Mycobacteriol. 2016;5:S161.
  • WHO-Tuberculosis-End TB Strategy-Global strategy and targets for tuberculosis prevention, care and control after 2015 [Internet]. Geneva: World Health Organization; 2015 [cited 2017 Jul 22]; [about 1 screens]. Available from: http://www.who.int/tb/post2015_strategy/en/
  • Jamwal SV, Mehrotra P, Singh A, et al. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep. 2017;6:23089.
  • Cirillo SLG, Subbian S, Chen B, et al. Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination. Infect Immun. 2009;77:2557–2567.
  • Vandal OH, Nathan CF, Ehrt S. Acid resistance in Mycobacterium tuberculosis. J Bacteriol. 2009;191:4714–4721.
  • Ferrari G, Langen H, Naito M, et al. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell. 1999;97:435–447.
  • CDC. Questions and answers about tuberculosis [Internet]. Atlanta (GA): Centers for Disease Control and Prevention (CDC); 2014 [cited 2017 Jul 22]; Available from: https://www.cdc.gov/tb/publications/faqs/pdfs/qa.pdf
  • Da Silva PEA, Von Groll A, Martin A, et al. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 2011;63:1–9.
  • Balganesh M, Dinesh N, Sharma S, et al. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012;56:2643–2651.
  • Rossi ED, Aínsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev. 2006;30:36–52.
  • Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3:317–340.
  • Tiberi S, Scardigli A, Centis R, et al. Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis. 2017;56:181–184.
  • Maitre T, Aubry A, Jarlier V, et al. Multidrug and extensively drug-resistant tuberculosis. Med Mal Infect. 2017;47:3–10.
  • Nasiruddin M, Neyaz MK, Das S, et al. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat. 2017;2017:4920209.
  • Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86:7–22.
  • Muralidharan P, Malapit M, Mallory E, et al. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 2015;11:1189–1199.
  • Hidalgo A, Cruz A, Pérez-Gil J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur J Pharm Biopharm. 2015;95:117–127.
  • Parumasivam T, Chang RYK, Abdelghany S, et al. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev. 2016;102:83–101.
  • Costa A, Pinheiro M, Magalhães J, et al. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev. 2016;102:102–115.
  • Hoppentocht M, Hagedoorn P, Frijlink HW, et al. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev. 2014; 75:18–31.
  • Hoppentocht M, Hagedoorn P, Frijlink HW, et al. Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: a critical evaluation. Eur J Pharm Biopharm. 2014;86:23–30.
  • de Boer AH, Hagedoorn P, Hoppentocht M, et al. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14:499–512.
  • Mehta P. Dry powder inhalers: a focus on advancements in novel drug delivery systems. J Drug Deliv. 2016;2016:1–16.
  • Doktorovová S, Kovačević AB, Garcia ML, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–252.
  • Boverhof DR, Bramante CM, Butala JH, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015;73: 137–150.
  • Gwinn MR, Vallyathan V. Nanoparticles: health effects – pros and cons. Environ Health Perspect. 2006;114:1818.
  • Rojanarat W, Changsan N, Tawithong E, et al. Isoniazid proliposome powders for inhalation – preparation, characterization and cell culture studies. IJMS. 2011;12:4414–4434.
  • Changsan N, Nilkaeo A, Pungrassami P, et al. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J Drug Target. 2009;17:751–762.
  • Patil JS, Devi VK, Devi K, et al. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India. 2015;32: 331–338.
  • Patil-Gadhe A, Pokharkar V. Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach. Pulm Pharmacol Ther. 2014;27:197–207.
  • Pokharkar V, Patil-Gadhe A, Kyadarkunte A, et al. Rifapentine-proliposomes for inhalation: in vitro and in vivo toxicity. Toxicol Int. 2014;21:275–282.
  • Rojanarat W, Nakpheng T, Thawithong E, et al. Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv. 2012;19:334–345.
  • Eedara BB, Tucker IG, Das SC. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis. Int J Pharm. 2016;506:174–183.
  • Rojanarat W, Nakpheng T, Thawithong E, et al. Levofloxacin-proliposomes: opportunities for use in lung tuberculosis. Pharmaceutics. 2012;4:385–412.
  • Shah SP, Misra A. Liposomal amikacin dry powder inhaler: effect of fines on in vitro performance. AAPS PharmSciTech. 2004;5:107–113.
  • Manca ML, Valenti D, Sales OD, et al. Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin. Int J Pharm. 2014;472: 102–109.
  • Pourshahab PS, Gilani K, Moazeni E, et al. Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. J Microencapsul. 2011;28:605–613.
  • Rawal T, Parmar R, Tyagi RK, et al. Rifampicin loaded chitosan nanoparticle dry powder presents: an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces. 2017;154:321–330.
  • Kundawala AJ, Patel VA, Patel HV, et al. Preparation of microparticles containing rifampicin as dry powder formulation: in vitro studies on aerosol performance. Am J PharmTech Res. 2012;2:470–483.
  • Pai RV, Jain RR, Bannalikar AS, et al. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J Aerosol Med Pulm D. 2016;29:179–195.
  • Kundawala AJ, Patel VA, Patel HV, et al. Treating tuberculosis with Chitosan microparticles loaded with rifampicin as respirable powder for pulmonary delivery. Ind J Nov Drug Deliver 2012;4:57–65.
  • Kundawala A, Patel V, Patel H, et al. Preparation, in vitro characterization, and in vivo pharmacokinetic evaluation of respirable porous microparticles containing rifampicin. Sci Pharm. 2014;82:665–682.
  • Lawlor C, O’Sullivan MP, Rice B, et al. Therapeutic aerosol bioengineering of targeted, inhalable microparticle formulations to treat Mycobacterium tuberculosis (MTb). J Mater Sci Mater Med. 2012;23:89–98.
  • Parumasivam T, Leung SSY, Quan DH, et al. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: preparation and in vitro aerosol characterization. Eur J Pharm Sci. 2016;88:1–11.
  • Kundawala AJ, Patel V, Patel HV, et al. Isoniazid loaded chitosan microspheres for pulmonary delivery: preparation and characterization. Pharm Sin. 2011;2:88–97.
  • Doan TVP, Couet W, Olivier JC. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm. 2011; 414:112–117.
  • Doan TVP, Olivier JC. Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization. Int J Pharm. 2009;382:61–66.
  • Ohashi K, Kabasawa T, Ozeki T, et al. One-step preparation of rifampicin/poly (lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release. 2009;135:19–24.
  • Coowanitwong I, Arya V, Kulvanich P, et al. Slow release formulations of inhaled rifampin. AAPS J. 2008;10:342–348.
  • O'hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res. 2000;17:955–961.
  • Diab R, Brillault J, Bardy A, et al. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophage targeting. Int J Pharm. 2012;436:833–839.
  • Gaspar MC, Sousa JJS, Pais AACC, et al. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur J Pharm Biopharm. 2015;96: 65–75.
  • Ventura CA, Tommasini S, Crupi E, et al. Chitosan microspheres for intrapulmonary administration of moxifloxacin: interaction with biomembrane models and in vitro permeation studies. Eur J Pharm Biopharm. 2008;68:235–244.
  • Mizoe T, Ozeki T, Okada H. Application of a four-fluid nozzle spray drier to prepare inhalable rifampicin-containing mannitolmicroparticles. AAPS PharmSciTech. 2008;9:755–761.
  • Sung JC, Padilla DJ, Garcia-Contreras L, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009; 26:1847–1855.
  • Kho K, Hadinoto K. Optimizing aerosolization efficiency of dry-powder aggregates of thermally-sensitive polymeric nanoparticles produced by spray-freeze-drying. Powder Technol. 2011;214:169–176.
  • Son YJ, McConville JT. Preparation of sustained release rifampicin microparticles for inhalation. J Pharm Pharmacol. 2012;64:1291–1302.
  • Vadakkan MV, Annapoorna K, Sivakumar KC, et al. Dry powder cationic lipopolymericnanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage. Int J Nanomedicine. 2013;8:2871–2885.
  • Darbandi MA, Rouholamini N, Gilani K, et al. The effect of vehicles on spray drying of rifampicin inhalable microparticles: in vitro and in vivo evaluation. DARU. 2008;16: 128–135.
  • Duan J, Vogt FG, Li X, et al. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery. Int J Nanomedicine. 2013;8:3489–3505.
  • Lee SH, Teo J, Heng D, et al. Synergistic combination dry powders for inhaled antimicrobial therapy: formulation, characterization and in vitro evaluation. Eur J Pharm Biopharm. 2013;83:275–284.
  • Momin MAM, Sinha S, Tucker IG, et al. Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis. Int J Pharm. 2017;528: 107–117.
  • Manion JR, Cape SP, McAdams DH, et al. Inhalable antibiotics manufactured through use of near-critical or supercritical fluids. Aerosol Sci Technol. 2012;46:403–410.
  • Schoubben A, Giovagnoli S, Tiralti MC, et al. Capreomycin inhalable powders prepared with an innovative spray-drying technique. Int J Pharm. 2014;469:132–139.
  • Fiegel J, Garcia-Contreras L, Thomas M, et al. Preparation and in vivo evaluation of a dry powder for inhalation of capreomycin. Pharm Res. 2008;25:805–811.
  • Garcia-Contreras L, Padilla-Carlin DJ, Sung J, et al. Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs. J Pharm Sci. 2017;106:331–337.
  • Verma RK, Germishuizen WA, Motheo MP, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother. 2013;57:1050–1052.
  • Gad S, Tajber L, Corrigan OI, et al. Preparation and characterisation of novel spray-dried nano-structured para-aminosalicylic acid particulates for pulmonary delivery: impact of ammonium carbonate on morphology, chemical composition and solid state. J Pharm Pharmacol. 2012;64: 1264–1274.
  • Tsapis N, Bennett D, O’Driscoll K, et al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis (Edinb). 2003;83:379–385.
  • Yadav A, Murthy MS, Shete AS, et al. Stability aspects of liposomes. IJPER. 2011;45:402–413.
  • Infectex-Maxwell Biotech Group. Infectex successfully completes phase 1 clinical study of Q203 for treatment of tuberculosis [Internet]. Moscow: Infectex-Maxwell Biotech Group; [cited 2018 Feb 02]; [about 1 screens]. Available from: http://infectex.ru/en/%D0%B1%D0%B5%D0%B7-%D1%80%D1%83%D0%B1%D1%80%D0%B8%D0%BA%D0% B8-en/infectex-successfully-completes-phase-1-clinical-study-of-q203-for-treatment-of-tuberculosis/
  • Infectex-Maxwell Biotech Group. Infectex announces positive phase 2b-3 clinical trial results of SQ109 for the treatment of multidrug-resistant pulmonary tuberculosis [Internet]. Moscow: Infectex-Maxwell Biotech Group; [cited 2018 Feb 02]; [about 1 screens]. Available from: http://infectex.ru/en/%D0%B1%D0%B5%D0%B7-%D1%80%D1%83% D0%B1%D1%80%D0%B8%D0%BA%D0%B8-en/infectex-announces-positive-phase-2b-3-clinical-trial-results-of-sq109-for-the-treatment-of-multidrug-resistant-pulmonary-tuberculosis/
  • Traini D, Paul MY. Drug delivery for tuberculosis: is inhaled therapy the key to success? Ther Deliv. 2017;8:819–821.
  • DR-TB clinical trials progress report [Internet]. Cambridge (MA): RESIST-TB: Research Excellence to Stop TB Resistance; [cited 2018 Feb 02]; [about 2 screens]. Available from: http://www.resisttb.org/?page_id=1602
  • Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices (Auckl). 2015;8:131–139.
  • Crowder TM, Donovan MJ. Controlled pulmonary drug delivery: science and technology of dry powder inhalers. New York (NY): Springer; 2011.
  • Ashurst I, Malton A, Prime D, et al. Latest advances in the development of dry powder inhalers. Pharm Sci Technol Today. 2000;3:246–256.
  • Warheit DB. Nanoparticles: health impacts? Mater Today. 2004;7:32–35.
  • Hsiao IL, Huang YJ. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ. 2011;409:1219–1228.
  • Hussain S, Boland S, Baeza-Squiban A, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260:142–149.
  • Jiménez-Lamana J, Laborda F, Bolea E, et al. An insight into silver nanoparticles bioavailability in rats. Metallomics. 2014;6:2242–2249.
  • Hickey AJ, Misra A, Fourie PB. Dry powder antibiotic aerosol product development: inhaled therapy for tuberculosis. J Pharm Sci. 2013;102:3900–3907.
  • US Food and Drug Administration/Center for Drug Evaluation and Research (USFDA/CDER). Nonclinical Safety Evaluation of Reformulated Drug Products and Products Intended for Administration by an Alternate Route, Guidance for Industry and Review Staff, Good Review Practice. Silver Spring (MD): USFDA/CDER; 2015:1–12.
  • Naseri N, Valizadeh H, ZakeriMilani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5:305–313.
  • Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012; 47:139–151.
  • Kaur P, Garg T, Rath G, et al. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug Deliv. 2016;23:1912–1925.
  • Xia D, Shrestha N, van de Streek J, et al. Spray drying of fenofibrate loaded nanostructured lipid carriers. Asian J Pharm Sci. 2016;11:507–515.
  • Jyoti K, Kaur K, Pandey RS, et al. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies. J Colloid Interf Sci. 2015;445:219–230.
  • Patil-Gadhe A, Kyadarkunte A, Patole M, et al. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur J Pharm Biopharm. 2014;88:169–177.
  • Patil-Gadhe A, Pokharkar V. Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: optimization by factorial design. Int J Pharm. 2016;501:199–210.
  • Moreno-Sastre M, Pastor M, Esquisabel A, et al. Stability study of sodium colistimethate-loaded lipid nanoparticles. J Microencapsul. 2016;33:636–645.
  • Pinheiro M, Ribeiro R, Vieira A, et al. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther. 2016;10:2467–2475.
  • Song X, Lin Q, Guo L, et al. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharm Res. 2015;32:1741–1751.
  • Sato MR, Oshiro Junior JA, Machado RTA, et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther. 2017;11:909–921.
  • Jones BG, Dickinson PA, Gumbleton M, et al. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Int J Pharm. 2002;236:65–79.
  • Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 2014;89:163–174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.