301
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Mycobacterial protein tyrosine kinase, PtkA phosphorylates PtpA at tyrosine residues and the mechanism is stalled by the novel series of inhibitors

, , , , , , , , & show all
Pages 51-59 | Received 18 Jan 2018, Accepted 02 May 2018, Published online: 21 May 2018

References

  • Shi L, Potts M, Kennelly PJ. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev. 1998;22:229–253.
  • Grangeasse C, Cozzone A, Deutscher J, et al. Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci. 2007;32:86–94.
  • Atkinson M, Allen C, Sequeira L. Tyrosine phosphorylation of a membrane protein from Pseudomonas solanacearum. J Bacteriol. 1992;174:4356–4360.
  • Global Tuberculosis Report. Geneva: World Health Organization; 2017. Licence: CC BY-NCSA 3.0 IGO.
  • Asif M. Mini review on important biological properties of benzofuran derivatives. JAPLR. 2016;3:48–51.
  • Ugale V, Patel H, Patel B, et al. Benzofurano-isatins: search for antimicrobial agents. Arab J Chem. 2017;10:S389–S396.
  • Puranik P, Kulkarni AEVM. QSAR analysis of N-myristoyltransferase inhibitors: antifungal activity of benzofurans. Med Chem Res. 2009;18:206–220.
  • Lazo JS, Nunes R, Skoko JJ, et al. Novel benzofuran inhibitors of human mitogen-activated protein kinase phosphatase-1. Bioorg Med Chem. 2006;14:5643–5650.
  • Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem. 2009;44:2632–2635.
  • Koul A, Choidas A, Treder M, et al. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol. 2000;182:5425–5432.
  • Chao JD, Wong D, Av-Gay Y. Microbial protein-tyrosine kinases. J Biol Chem. 2014;289:9463–9472.
  • Zhou P, Li W, Wong D, et al. Phosphorylation control of protein tyrosine phosphatase A activity in Mycobacterium tuberculosis. FEBS Lett. 2015;589:326–331.
  • Wong D, Li W, Chao JD, et al. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Sci Rep. 2018;8:1–12.
  • Bitter W, Houben ENG, Bottai D, et al. Systematic genetic nomenclature for type VII secretion systems. PLOS Pathog. 2013;5:8–13.
  • Rajesh M, Thirupathi N, Jagadeshwar Reddy T, et al. Pd-catalyzed isocyanide assisted reductive cyclization of 1-(2-hydroxyphenyl)-propargyl alcohols for 2-alkyl/benzylbenzofurans and their useful oxidative derivatization. J Org Chem. 2015;80:12311–12320.
  • Ranjith Kumar G, Kiran Kumar Y, Kant R, et al. Synthesis of benzofuranyl and indolyl methyl azides by tandem silver-catalyzed cyclization and azidation. Org Biomol Chem. 2016;14:4077–4088.
  • Pandey S, Chatterjee A, Jaiswal S, et al. Protein kinase C-δ inhibitor, Rottlerin inhibits growth and survival of mycobacteria exclusively through Shikimate kinase. Biochem Biophys Res Commun. 2016;478:721–726.
  • Jaiswal S, Srivastava KK. Protein tyrosine kinase A modulates intracellular survival of mycobacteria through Galectin 3. Biochem Biophys Res Commun. 2018;498:884–890.
  • Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLOS Pathog. 2013;9:e1003120.
  • Singh N, Tiwari S, Srivastava KK, et al. Identification of novel inhibitors of Mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation. J Chem Inf Model. 2015;55:1120–1129.
  • Chatterjee A, Pandey S, Singh PK, et al. Biochemical and functional characterizations of tyrosine phosphatases from pathogenic and nonpathogenic mycobacteria: indication of phenyl cyclopropyl methyl-/phenyl butenyl azoles as tyrosine phosphatase inhibitors. Appl Microbiol Biotechnol. 2015;99:7539–7548.
  • Madhurantakam C, Rajakumara E, Mazumdar A, et al. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1. 9-Å resolution. J Bacteriol. 2005;187:2175–2181.
  • Berman HM. The protein data bank. Nucleic Acids Res. 2000;28:235–242.
  • Barakat MM, Powers JM. In vitro bond strength of cements to treated teeth. Aust Dent J. 1986;31:415–419.
  • Spitzer R, Jain AN. Surflex-dock: docking benchmarks and real-world application. J Comput Aided Mol Des. 2012;26:687–699.
  • Tripos. Sybyl-X Molecular Modeling Software Packages, Version 2.1. St. Louis (MO): TRIPOS Associates, Inc; 2016.
  • Karlsson R, Kullman-Magnusson M, Hämäläinen MD, et al. Biosensor analysis of drug-target interactions: direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors. Anal Biochem. 2000;278:1–13.
  • Rosenkrands I, Andersen P. Preparation of culture filtrate proteins from Mycobacterium tuberculosis. Methods Mol Med. 2001;54:205–215.
  • Daniel TM, Ferguson LE. Purification and characterization of two proteins from culture filtrates of Mycobacterium tuberculosis H37Ra strain. Infect Immun. 1970;1:164–168.
  • Deoghare S. Bedaquiline: a new drug approved for treatment of multidrug-resistant tuberculosis. Indian J Pharmacol. 2018;45:536–537.
  • Mahajan R. Bedaquiline: first FDA-approved tuberculosis drug in 40 years. Int J App Basic Med Res. 2018;3:1–2.
  • Cholo MC, Mothiba MT, Fourie B, et al. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72:338–353.
  • Hards K, Robson JR, Berney M, et al. Bactericidal mode of action of bedaquiline. J Antimicrob Chemother. 2018;70:2028–2037.
  • Matteelli A, Dooley KE, Kritski A. TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol. 2010;5:849–858.
  • Lewis JM, Sloan DJ. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag. 2015;11:779–791.
  • Xavier AS, Lakshmanan M. Delamanid: a new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother. 2018;5:222–224.
  • Kamsri P, Punkvang A, Hannongbua S, et al. Elucidating structural basis of benzofuran pyrrolidine pyrazole derivatives for enhancing potency against both the InhA enzyme and intact M. tuberculosis cells: a combined MD simulations and 3D-QSAR study. RSC Adv. 2015;5:52926–52937.
  • Yempala T, Sridevi JP, Yogeeswari P, et al. Design, synthesis and antitubercular evaluation of novel 2-substituted-3H-benzofuro benzofurans via palladium–copper catalysed Sonagashira coupling reaction. Bioorg Med Chem Lett. 2013;23:5393–5396.
  • Manuscript A, Application R. NIH public access. Russell J Bertrand Russell Arch. 2012;26:687–699.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.